The European Physical Journal Special Topics

, Volume 226, Issue 4, pp 737–747 | Cite as

Percolation in education and application in the 21st century

Review
Part of the following topical collections:
  1. Recent Advances in Phase Transitions and Critical Phenomena

Abstract

Percolation, “so simple you could teach it to your wife” (Chuck Newman, last century) is an ideal system to introduce young students to phase transitions. Two recent projects in the Computational Physics group at the Technion make this easy. One is a set of analog models to be mounted on our walls and enable visitors to switch between samples to see which mixtures of glass and metal objects have a percolating current. The second is a website enabling the creation of stereo samples of two and three dimensional clusters (suited for viewing with Oculus rift) on desktops, tablets and smartphones. Although there have been many physical applications for regular percolation in the past, for Bootstrap Percolation, where only sites with sufficient occupied neighbours remain active, there have not been a surfeit of condensed matter applications. We have found that the creation of diamond membranes for quantum computers can be modeled with a bootstrap process of graphitization in diamond, enabling prediction of optimal processing procedures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.R. Broadbent, J.M. Hammersley, Math. Proc. Cambridge Phil. Soc. 53, 629 (1957)ADSCrossRefGoogle Scholar
  2. 2.
    G. Deutscher, R. Zallen, J. Adler, Percolation Structures and Processes (Israel Physical Society, Annals of the Israel Physical Society, Jerusalem, 1983)Google Scholar
  3. 3.
    J. Adler, Physica A 171, 453 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    J. Adler, R.G. Palmer, H. Meyer, Phys. Rev. Lett. 58, 882 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    J. Adler, A. Brandt, W. Janke, S. Shmuylian, J. Phys. A 28, 5117 (1995)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Silverman, R. Kalish, J. Adler, Phys. Rev. B 83, 224206 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    J. Adler, A. Silverman, N. Ierushalmi, A. Sorkin, R. Kalish, J. Phys. Conf. Ser. 487, 01215 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Adler, A. Aharony, J. Phys. A 21, 1387 (1988)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Private communicationGoogle Scholar
  10. 10.
    O. Melchert, A.K. Hartmann, M. Mezard, Phys. Rev. E 84, 041106 (2011)ADSCrossRefGoogle Scholar
  11. 11.
  12. 12.
    S.R. Broadbent, J. Roy. Statist. Soc. B. 68 (1954)Google Scholar
  13. 13.
    J. Adler, M. Moshe, V. Privman, J. Phys. A 14, L363 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    R.H. Schonmann, Ann. Probab. 20, 174 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A.C.D. van Enter, J. Stat. Phys. 48, 943 (1987)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J.W. Essam, Rep. Progress Phys. 43, 833 (1980)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1977)ADSCrossRefGoogle Scholar
  18. 18.
    D. Stauffer, Phys. Rep. 54, 1 (1979)ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
  21. 21.
  22. 22.
  23. 23.
  24. 24.
  25. 25.
    J. Adler, U. Lev, Braz. J. Phys. 33, 641 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    J. Adler, O. Cohen, Solid Hydrogen – New Twists on an Old Problem in Recent Developments in Computer Simulation Studies in Condensed Matter Physics, X, edited by D.P. Landau, S.P. Lewis, B. Schuttler, Physics Procedia 6, 2 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    F. Silvera, Rev. Mod. Phys. 52, 393 (1980)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Technion – IITHaifaIsrael

Personalised recommendations