Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 881–888 | Cite as

The topological pressure-temperature phase diagram of fluoxetine nitrate: monotropy unexpectedly turning into enantiotropy

Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications

Abstract

The phase behavior of pharmaceuticals is important for regulatory requirements and dosage form development. Racemic fluoxetine nitrate possesses two crystalline forms for which initial measurements indicated that they have a monotropic relationship with form I the only stable form. By constructing the topological pressure-temperature phase diagram, it has been shown that unexpectedly form II has a stable domain in the phase diagram and can be easily obtained by heating and grinding. The pressure necessary to obtain form II is only 11 MPa, which is much lower than most pressure used for tableting in the pharmaceutical industry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.S. Carvalho Jr, J. Ellena, D.S. Yufit, J.A. Howard, Cryst. Growth Des. 16, 3875 (2016)CrossRefGoogle Scholar
  2. 2.
    H.W. Bakhuis Roozeboom, Die heterogenen Gleichgewichte vom Standpunkte der Phasenlehre. Erstes Heft: Die Phasenlehre - Systeme aus einer Komponente (Friedrich Vieweg und Sohn, Braunschweig, 1901)Google Scholar
  3. 3.
    R. Céolin, I.B. Rietveld, Ann. Pharm. Fr. 74, 12 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Gavezzotti, Molecular Aggregation. Structure Analysis and Molecular Simulation of Crystals and Liquids (Oxford University Press, Oxford, UK, 2013)Google Scholar
  5. 5.
    R. Céolin, I.B. Rietveld, Ann. Pharm. Fr. 73, 22 (2015)CrossRefGoogle Scholar
  6. 6.
    I.B. Rietveld, R. Céolin, J. Therm. Anal. Calorim. 120, 1079 (2015)CrossRefGoogle Scholar
  7. 7.
    I. Rietveld, M. Barrio, P. Espeau, J. Tamarit, R. Céolin, J. Phys. Chem. B 115, 1672 (2011)CrossRefGoogle Scholar
  8. 8.
    I.B. Rietveld, M. Barrio, J.-L. Tamarit, B. Do, R. Céolin, J. Phys. Chem. B 115, 14698 (2011)CrossRefGoogle Scholar
  9. 9.
    R.J. Davey, H. Lorenz, J. von Langermann, G. Sadiq, C.C. Seaton, A. Seide-Morgenstern, Cryst. Growth Des. 11, 1549 (2011)CrossRefGoogle Scholar
  10. 10.
    R. Ceolin, S. Toscani, I.B. Rietveld, M. Barrio, J.-L. Tamarit, Eur. Phys. J. - S.T. (2017)Google Scholar
  11. 11.
    E. Riecke, Z. Phys. Chem. (Munich) 6, 411 (1890)Google Scholar
  12. 12.
    L. Yu, J. Pharm. Sci. 84, 966 (1995)CrossRefGoogle Scholar
  13. 13.
    R. Ceolin, I.B. Rietveld, Eur. Phys. J. - S.T. (2017)Google Scholar
  14. 14.
    P. Espeau, R. Céolin, J.L. Tamarit, M.A. Perrin, J.P. Gauchi, F. Leveiller, J. Pharm. Sci. 94, 524 (2005)CrossRefGoogle Scholar
  15. 15.
    J. Ledru, C.T. Imrie, C.R. Pulham, R. Céolin, J.M. Hutchinson, J. Pharm. Sci. 96, 2784 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Barrio, P. Espeau, J.L. Tamarit, M.A. Perrin, N. Veglio, R. Céolin, J. Pharm. Sci. 98, 1657 (2009)CrossRefGoogle Scholar
  17. 17.
    I. Gana, R. Céolin, I.B. Rietveld, J. Therm. Anal. Calorim. 112, 223 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.LETIAM, EA7357, IUT Orsay, Université Paris Sud, rue NoetzlinOrsay CedexFrance
  2. 2.Caractérisation des Matériaux Moléculaires à Activité Thérapeutique (CAMMAT), Faculté de Pharmacie, Université Paris DescartesParisFrance

Personalised recommendations