The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 857–867 | Cite as

Orientational order in the stable buckminster fullerene solvate C60·2CBr2H2

  • J. Ye
  • M. Barrio
  • Ph. Negrier
  • N. Qureshi
  • I. B. Rietveld
  • R. Céolin
  • J. Ll. Tamarit
Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications

Abstract

Crystals of the solvate C60·2CBr2H2 (monoclinic C2/m), which is stable in air, were grown by slow evaporation of solutions of C60 in CBr2H2 at room temperature. The high enthalpy change for the complete desolvation process, 54.9 kJ mol−1 of solvent, as well as the relatively large negative excess volume of −49.6 Å3 indicate the presence of strong intermolecular interactions between C60 and CBr2H2. The strong intermolecular interactions are consistent with an overall orientational order for the C60 and the CBr2H2 molecules in the solvate as found by the Rietveld refinement of its crystal structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.F. Meidine, P.B. Hitchcock, H.W. Kroto, R. Taylor, D.R.M. Walton, J. Chem. Soc. Chem. Commun. 20, 1534 (1992)CrossRefGoogle Scholar
  2. 2.
    R. Céolin, V. Agafonov, D. André, A. Dworkin, H. Szwarc, J. Dugué, B. Keita, L. Nadjo, C. Fabre, A. Rassat, Chem. Phys. Lett. 208, 259 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    R.S. Ruoff, D.S. Tse, R. Malhotra, D.C. Lorents, J. Phys. Chem. 97, 3379 (1993)CrossRefGoogle Scholar
  4. 4.
    H.B. Bürgi, R. Restori, D. Schwarzenbach, A.L. Balch, J.W. Lee, B.C. Noll, M.M. Olmstead, Chem. Mater. 6, 1325 (1994)CrossRefGoogle Scholar
  5. 5.
    S. Pekker, G. Faigel, K. Fodor-Csorba, L. Gránásy, E. Jakab, M. Tegze, Solid State Commun. 83, 423 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    A. Graja, R. Swietlik, Synth. Met. 70, 1417 (1995)CrossRefGoogle Scholar
  7. 7.
    R. Céolin, V. Agafonov, B. Bachet, A. Gonthier-Vassal, H. Szwarc, S. Toscani, G. Keller, C. Fabre, A. Rassat, Chem. Phys. Lett. 244, 100 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    R. Swietlik, P. Byszewski, E. Kowalska, Chem. Phys. Lett. 254, 73 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    M. Barrio, D.O. Lopez, J.Ll. Tamarit, H. Szwarc, S. Toscani, R. Céolin, Chem. Phys. Lett. 260, 78 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    H. He, J. Barras, J. Foulkes, J. Klinowski, J. Phys. Chem. B 101, 117 (1997)CrossRefGoogle Scholar
  11. 11.
    R. Céolin, V. Agafonov, S. Toscani, M.F. Gardette, A. Gonthier-Vassal, H. Szwarc, Fullerene Sci. Technol. 5, 559 (1997)CrossRefGoogle Scholar
  12. 12.
    F. Michaud, M. Barrio, S. Toscani, D.O. López, J.Ll. Tamarit, V. Agafonov, H. Szwarc, R. Céolin, Phys. Rev. B 57, 10351 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    I.E. Grey, M.J. Hardie, T.J. Ness, C.L. Raston, Chem. Commun. 12, 1139 (1999)CrossRefGoogle Scholar
  14. 14.
    R. Céolin, J.Ll. Tamarit, D.O. López, M. Barrio, V. Agafonov, H. Allouchi, F. Moussa, H. Szwarc. Chem. Phys. Lett. 314, 21 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    A. Talyzin, U. Jansson, J. Phys. Chem. B 104, 5064 (2000)CrossRefGoogle Scholar
  16. 16.
    S. Toscani, H. Allouchi, J.Ll. Tamarit, D.O. López, M. Barrio, V. Agafonov, A. Rassat, H. Szwarc, R. Céolin, Chem. Phys. Lett. 330, 491 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    F. Michaud, M. Barrio, D.O. López, J.Ll. Tamarit, V. Agafonov, S. Toscani, H. Szwarc, R. Céolin, Chem. Mater. 12, 3595 (2000)CrossRefGoogle Scholar
  18. 18.
    L. Wang, B.B. Liu, S.D. Yu, M.G. Yao, D.D. Liu, Y.Y. Hou, T. Cui, G.T. Zou, B. Sundqvist, Chem. Mater. 18, 4190 (2006)CrossRefGoogle Scholar
  19. 19.
    L. Wang, B.B. Liu, D.D. Liu, M.G. Yao, Y.Y. Hou, S.D. Yu, T. Cui, D.M. Li, G.T. Zou, Adv. Mater. 18, 1883 (2006)CrossRefGoogle Scholar
  20. 20.
    R. Céolin, J.Ll. Tamarit, M. Barrio, D.O. López, S. Toscani, H. Allouchi, V. Agafonov, H. Szwarc, Chem. Mater. 13, 1349 (2001)CrossRefGoogle Scholar
  21. 21.
    P. Espeau, M. Barrio, D.O. López, J.Ll. Tamarit, R. Céolin, H. Allouchi, V. Agafonov, F. Masin, H. Szwarc, Chem. Mater. 14, 321 (2002)CrossRefGoogle Scholar
  22. 22.
    M. Barrio, D.O. López, J.Ll. Tamarit, P. Espeau, R. Céolin, Chem. Mater. 15, 288 (2003)CrossRefGoogle Scholar
  23. 23.
    R. Céolin, D.O. López, M. Barrio, J.Ll. Tamarit, P. Espeau, B. Nicolaï, H. Allouchi, R.J. Papoular, Chem. Phys. Lett. 399, 401 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    R. Céolin, J.Ll. Tamarit, M. Barrio, D.O. López, P. Espeau, H. Allouchi, R.J. Papoular, Carbon 43, 417 (2005)CrossRefGoogle Scholar
  25. 25.
    R. Céolin, D.O. López, B. Nicolaï, P. Espeau, M. Barrio, H. Allouchi, J.Ll. Tamarit, Chem. Phys. 342, 78 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    H.Y. He, J. Barras, J. Foulkes, J. Klinowski, J. Phys. Chem. B 101, 117 (1997)CrossRefGoogle Scholar
  27. 27.
    M. Jansen, G. Waidmann, Z. Anorg. Allg. Chem. 621, 14 (1995)CrossRefGoogle Scholar
  28. 28.
    S. Pekker, É. Kováts, G. Oszlányi, G. Bényei, G. Klupp, G. Bortel, I. Jalsovszky, E. Jakab, F. Borondics, K. Kamarás, M. Bokor, G. Kriza, K. Tompa, G. Faigel, Nature Mater. 4, 764 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    M.M. Olmstead, F. Jiang, A.L. Balch, Chem. Commun. 6, 483 (2000)CrossRefGoogle Scholar
  30. 30.
    A.L. Balch, J.W. Lee, B.C. Noll, M.M. Olmstead, J. Chem. Soc. Chem. Commun. 1, 56 (1993)CrossRefGoogle Scholar
  31. 31.
    M.V. Korobov, A.L. Mirakian, N.V. Avramenko, E.F. Valeev, L.S. Neretin, Y.L. Slovokhotov, A.L. Smith, G. Olofsson, R.S. Ruo, J. Phys. Chem. B 102, 3712 (1998)CrossRefGoogle Scholar
  32. 32.
    M. Podsiadlo, K. Dziubek, M. Szafranski, A. Katrusiak, Acta Cryst. B 62, 1090 (2006)CrossRefGoogle Scholar
  33. 33.
    T. Kawaguchi, M. Hijikigawa, Y. Hayafuji, M. Ikeda, R. Fukushima, Y. Tomiie, Bull. Chem. Soc. Jpn. 46, 53 (1973)CrossRefGoogle Scholar
  34. 34.
    B.H. Torrie, O.S. Binbrek, I.P. Swainson, B.M. Powell, Molec. Phys. 97, 581 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    J. Ballon, V. Comparat, J. Pouxe, Nucl. Instrum. Methods 217, 213 (1983)CrossRefGoogle Scholar
  36. 36.
    MS Modeling (Materials Studio) version 5.5, http://www.accelrys.com/mstudio/ms_modeling
  37. 37.
    W.A. Dollase, J. Appl. Crystallogr. 19, 267 (1986)CrossRefGoogle Scholar
  38. 38.
    L.W. Finger, D.E. Cox, A.P. Jephcoat, J. Appl. Cryst. 27, 892 (1994)CrossRefGoogle Scholar
  39. 39.
    G.B.M. Vaughan, Y. Chabre, D. Dubois, Europhys. Lett. 31, 525 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    J. Laynez, I. Wadsö, A. Haug, J. Songstad, A. Pilotti, Acta Chem. Scand. 26, 3148 (1972)CrossRefGoogle Scholar
  41. 41.
    N.N. Avgul, A.V. Kiselev, in Chemistry and Physics of Carbon, edited by P.L. Walker, Jr (Dekker, New York, 1970) Vol. 6, p. 39Google Scholar
  42. 42.
    A.I. Kitaigorodskii, Mixed Crystals (Springer-Verlag, Berlin, 1984)Google Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Departament de Física, ETSEIB, Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.LOMATalenceFrance
  3. 3.Institut Laue LangevinGrenoble Cedex 9France
  4. 4.Laboratoire de Chimie Physique, CAMMAT, Faculté de Pharmacie, Université Paris DescartesParisFrance
  5. 5.LETIAM, EA7357, IUT Orsay, Université Paris Sud, rue NoetzlinOrsay CedexFrance

Personalised recommendations