Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 869–880 | Cite as

Binary phase diagrams between phenanthrene and two of its impurities: 9,10-dihydroanthracene and carbazole

  • Antoine Burel
  • Nicolas Couvrat
  • Séverine Tisse
  • Yohann Cartigny
  • Pascal Cardinael
  • Gérard Coquerel
Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications

Abstract

The present study deals with the experimental determination of binary phase diagrams between Phenanthrene and two of its impurities in most commercial samples: 9,10-dihydroanthracene and carbazole. Phase equilibria were investigated by combining Differential Scanning Calorimetry and X-Ray Powder Diffraction analyses. The results highlighted the existence of two close eutectoid and eutectic reactions (∼64−65 C) in the phenanthrene/9,10-dihydroanthracene system; whereas eutectoid (∼55−60 C) and peritectic (∼120 C) reactions could be evidenced for the phenanthrene/carbazole system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. König, M. Stepanski, A. Kuszlik, P. Keil, C. Weller, Chem. Eng. Res. Des. 86, 775 (2008)CrossRefGoogle Scholar
  2. 2.
    M. Kaspereit, A. Seidel-Morgenstern, in Liquid Chromatography: Fundamentals and Instrumentation (Elsevier, 2013), pp. 427–452Google Scholar
  3. 3.
    G. Coquerel, Chem. Soc. Rev. 43, 2286 (2014)CrossRefGoogle Scholar
  4. 4.
    J.H. ter Horst, C. Schmidt, J. Ulrich, in Bulk Crystal Growth, 2nd edn. (Elsevier, 2015), Vol. II, pp. 1317–1349Google Scholar
  5. 5.
    J. Ulrich, H.C. Bülau, in Handbook of Industrial Crystallization, 2nd edn. (Butterworth Heinemann, 2002), pp. 161–179Google Scholar
  6. 6.
    C.A. Holden, H.S. Bryant, Separ. Sci. 4, 1 (1969)CrossRefGoogle Scholar
  7. 7.
    S. Matsumoto, T. Fukuda, Bull. Chem. Soc. Jpn. 40, 743 (1967)CrossRefGoogle Scholar
  8. 8.
    V. Petrícek, I. Císarová, L. Hummel, J. Kroupa, B. Brezina, Acta Crystallogr., Sect. B: Struct. Sci. 46, 830 (1990)CrossRefGoogle Scholar
  9. 9.
    J.P. Dougherty, S.K. Kurtz, J. Appl. Cryst. 9, 145 (1976)CrossRefGoogle Scholar
  10. 10.
    N. Couvrat, A. Burel, S. Tisse, Y. Cartigny, G. Coquerel, J. Therm. Anal. Calorim. 112, 293 (2013)CrossRefGoogle Scholar
  11. 11.
    B.J. McArdle, J.N. Sherwood, A.C. Damask, J. Crystal Growth 22, 193 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    A. Burel, S.J.T. Brugman, M. Mignot, Y. Cartigny, S. Tisse, N. Couvrat, V. Peulon-Agasse, P. Cardinael, G. Coquerel, Chem. Eng. Technol. 39, 1201 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Brandstätter-Kuhnert, H. Weiß, Monatsh. Chem. 88, 1007 (1957)CrossRefGoogle Scholar
  14. 14.
    J.P. Reboul, Y. Oddon, C. Caranoni, J.C. Soyfer, J. Barbe, G. Pèpe, Acta Cryst. C43, 537 (1987)Google Scholar
  15. 15.
    V.K. Bel’skii, Kristallografiya 30, 910 (1985)Google Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  • Antoine Burel
    • 1
  • Nicolas Couvrat
    • 1
  • Séverine Tisse
    • 1
  • Yohann Cartigny
    • 1
  • Pascal Cardinael
    • 1
  • Gérard Coquerel
    • 1
  1. 1.Normandie Université, Laboratoire SMS-EA3233, Université de Rouen-NormandieMont Saint AignanFrance

Personalised recommendations