The European Physical Journal Special Topics

, Volume 226, Issue 3, pp 433–442 | Cite as

Dual characterization of critical fluctuations: Density functional theory & nonlinear dynamics close to a tangent bifurcation

Regular Article
Part of the following topical collections:
  1. Nonlinearity, Nonequilibrium and Complexity: Questions and Perspectives in Statistical Physics

Abstract

We improve on the description of the relationship that exists between critical clusters in thermal systems and intermittency near the onset of chaos in low-dimensional systems. We make use of the statistical-mechanical language of inhomogeneous systems and of the renormalization group (RG) method in nonlinear dynamics to provide a more accurate, formal, approach to the subject. The description of this remarkable correspondence encompasses, on the one hand, the density functional formalism, where classical and quantum mechanical analogues match the procedure for one-dimensional clusters, and, on the other, the RG fixed-point map of functional compositions that captures the essential dynamical behavior. We provide details of how the above-referred theoretical approaches interrelate and discuss the implications of the correspondence between the high-dimensional (degrees of freedom) phenomenon and low-dimensional dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.G. Schuster, Deterministic Chaos. An Introduction (VCH Publishers, Weinheim, 1988)Google Scholar
  2. 2.
    N.G. Antoniou, Y.F. Contoyiannis, F.K. Diakonos, C.G. Papadoupoulos, Phys. Rev. Lett. 81, 4289 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    N.G. Antoniou, Y.F. Contoyiannis, F.K. Diakonos, Phys. Rev. E 62, 3125 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Y.F. Contoyiannis, F.K. Diakonos, Phys. Lett. A 268, 286 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Y.F. Contoyiannis, F.K. Diakonos, A. Malakis, Phys. Rev. Lett. 89, 035701 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    A. Robledo, Mol. Phys. 103, 3025 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    A. Robledo, Chin. Sci. Bull. 56, 3643 (2011)CrossRefGoogle Scholar
  8. 8.
    M.E. Fisher, S. Ma, B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    B. Hu, J. Rudnick, Phys. Rev. Lett. 48, 1645 (1982)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    I. Procaccia, H.G. Schuster, Phys. Rev. A 28, 1210 (1983)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Binder, in C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena (Academic Press, London, 1983), Vol. 8, p. 1Google Scholar
  12. 12.
    See, for example, C. Varea, A. Robledo, Physica A 255, 269 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    C. Varea, A. Robledo, Physica A 268, 391 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    F. Baldovin, A. Robledo, Europhys. Lett. 60, 518 (2002)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Instituto de Física, Universidad Nacional Autónoma de MéxicoMéxicoMexico
  2. 2.Instituto de Física y Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations