Effect of additives on the preferential crystallization of L-asparagine monohydrate

Abstract

Preferential Crystallization (PC) is a popular process to separate enantiomers, however the nucleation and growth of the counter enantiomer during the process can compromise the enantiopurity of the final crystalline product. This research investigates the use of additives to inhibit the nucleation and growth of the counter enantiomer. In this study, we use L-asparagine monohydrate (L-Asn·H2O) as the preferred enantiomer in crystallization from DL-Asn·H2O solutions. Additives include both pure enantiomers of several related amino acid species. This allows investigation of differences in inhibition caused by additives that are of the same chirality and different chirality as the preferred enantiomer. The additives had no discernible effect on the solubility but had a small effect on the metastable limit, with additives tending to slightly widen the metastable zone but also make the zone widths more disperse. D-additives have a small effect on the growth rate of L-Asn·H2O but L-Asp and L-Glu strongly inhibit the growth rate of L-Asn·H2O in DL-Asn·H2O solution; there must also be a corresponding effect for D-Asp and D-Glu on D-Asn·H2O. Indeed, PC experiments showed that in order to obtain L-Asn·H2O from a PC while preventing the formation of D-Asn·H2O, D-Asp and D-Glu are suitable additives, leading to high yield and purity of pure L-Asn·H2O.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P.Y. Bruice, Organic Chemistry, 4th edn. (Pearson Prentice Hall, New Jersey, 2004)

  2. 2.

    X.J. Wang, H. Wiehler, C.B. Ching, J. Chem. Eng. Data 48, 1092 (2003)

    Article  Google Scholar 

  3. 3.

    T. Eriksson, S. Bjorkman, P. Hoglund, Eur. J. Clin. Pharmacol. 57, 365 (2001)

    Article  Google Scholar 

  4. 4.

    M. Yoshikawa, A. Higuchi, in Encyclopedia of Membrane Science and Technology, edited by E.M.C. Hoek, V.V. Tarabara (John Wiley & Sons, Hoboken NJ, 2013)

  5. 5.

    E. Francotte, J. Chromatogr A 906, 379 (2001)

    Article  Google Scholar 

  6. 6.

    H. Lorenz, A. Perlberg, D. Sapoundjiev, M.P. Elsner, A. Seidel-Morgenstern, Chem. Eng. Process. 45, 863 (2006)

    Article  Google Scholar 

  7. 7.

    D. Kozma, CRC Handbook of Optical Resolution via Diastereomeric Salt Formation (CRC Press, Boca Raton, 2002)

  8. 8.

    J. Jacques, A. Collet, S. Wilen, Enantiomers, Racemates and Resolutions (John Wiley & Sons, New York, 1981)

  9. 9.

    T. Buhse, D.K. Kondepudi, B. Hoskins, Chirality 11, 343 (1999)

    Article  Google Scholar 

  10. 10.

    K. Petruševska-Seebach, A. Seidel-Morgenstern, M.P. Elsner, Cryst. Growth Des. 11, 2149 (2011)

    Article  Google Scholar 

  11. 11.

    V.M. Profir, M. Matsuoka, Colloid Surface A. 164, 315 (2000)

    Article  Google Scholar 

  12. 12.

    W. Srimahaprom, A.E. Flood, J. Cryst. Growth 362, 88 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    M.P. Elsner, G. Ziomek, A. Seidel-Morgenstern, AIChE J. 55, 640 (2009)

    Article  Google Scholar 

  14. 14.

    G. Levilain, M. Eicke, A. Seidel-Morgenstern, Cryst. Growth Des. 12, 5396 (2012)

    Article  Google Scholar 

  15. 15.

    M.J. Eicke, G. Levilain, A. Seidel-Morgenstern, Cryst. Growth Des. 13, 1638 (2013)

    Article  Google Scholar 

  16. 16.

    A. Svang-Ariyaskul, W.J. Koros, R.W. Rousseau, Chem. Eng. Sci. 64, 1980 (2009)

    Article  Google Scholar 

  17. 17.

    K. Würges, K. Petrusevska, S. Serci, S. Wilhelm, C. Wandrey, A. Seidel-Morgenstern, M.P. Elsner, S. Lütz, J. Mol. Catal. B: Enzym. 58, 10 (2009)

    Article  Google Scholar 

  18. 18.

    K. Petrusevska-Seebach, K. Würges, A. Seidel-Morgenstern, S. Lütz, M.P. Elsner, Chem. Eng. Sci. 64, 2473 (2009)

    Article  Google Scholar 

  19. 19.

    L. Addadi, J. van Mil, M. Lahav, J. Am. Chem. Soc. 103, 1249 (1981)

    Article  Google Scholar 

  20. 20.

    L. Addadi, S. Weinstein, E. Gati, I. Weissbuch, M. Lahav, J. Am. Chem. Soc. 104, 4610 (1982)

    Article  Google Scholar 

  21. 21.

    D.K. Kondepudi, M. Culha, Chirality 10, 238 (1998)

    Article  Google Scholar 

  22. 22.

    D.K. Kondepudi, K.E. Crook, Cryst. Growth Des. 5, 2173 (2005)

    Article  Google Scholar 

  23. 23.

    N. Doki, M. Yokota, S. Sasaki, N. Kubota, Cryst. Growth Des. 4, 1359 (2004)

    Article  Google Scholar 

  24. 24.

    S. Srisanga, J.H. ter Horst, Cryst. Growth Des. 10, 1808 (2010)

    Article  Google Scholar 

  25. 25.

    T. Izumi, D.G. Blackmond, Chem. Eur. J. 16, 3065 (2009)

    Article  Google Scholar 

  26. 26.

    C.J. Orella, D.J. Kirwan, Ind. Eng. Chem. Res. 30, 1040 (1991)

    Article  Google Scholar 

  27. 27.

    J.B. Dalton, C.L.A. Schmidt, J. Biol. Chem. 109, 241 (1935)

    Google Scholar 

  28. 28.

    D. Binev, A. Seidel-Morgenstern, H. Lorenz, Cryst. Growth Des. 16, 1409 (2016)

    Article  Google Scholar 

  29. 29.

    P. Kongsamai, A. Maneedaeng, A.E. Flood, in Proceeding of the 5th Regional Conference on Chemical Engineering, Pattaya, Thailand, 2013

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adrian E. Flood.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kongsamai, P., Maneedaeng, A., Flood, C. et al. Effect of additives on the preferential crystallization of L-asparagine monohydrate. Eur. Phys. J. Spec. Top. 226, 823–835 (2017). https://doi.org/10.1140/epjst/e2016-60257-3

Download citation