Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 823–835 | Cite as

Effect of additives on the preferential crystallization of L-asparagine monohydrate

  • Peetikamol Kongsamai
  • Atthaphon Maneedaeng
  • Chalongsri Flood
  • Joop H. ter Horst
  • Adrian E. Flood
Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications

Abstract

Preferential Crystallization (PC) is a popular process to separate enantiomers, however the nucleation and growth of the counter enantiomer during the process can compromise the enantiopurity of the final crystalline product. This research investigates the use of additives to inhibit the nucleation and growth of the counter enantiomer. In this study, we use L-asparagine monohydrate (L-Asn·H2O) as the preferred enantiomer in crystallization from DL-Asn·H2O solutions. Additives include both pure enantiomers of several related amino acid species. This allows investigation of differences in inhibition caused by additives that are of the same chirality and different chirality as the preferred enantiomer. The additives had no discernible effect on the solubility but had a small effect on the metastable limit, with additives tending to slightly widen the metastable zone but also make the zone widths more disperse. D-additives have a small effect on the growth rate of L-Asn·H2O but L-Asp and L-Glu strongly inhibit the growth rate of L-Asn·H2O in DL-Asn·H2O solution; there must also be a corresponding effect for D-Asp and D-Glu on D-Asn·H2O. Indeed, PC experiments showed that in order to obtain L-Asn·H2O from a PC while preventing the formation of D-Asn·H2O, D-Asp and D-Glu are suitable additives, leading to high yield and purity of pure L-Asn·H2O.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.Y. Bruice, Organic Chemistry, 4th edn. (Pearson Prentice Hall, New Jersey, 2004)Google Scholar
  2. 2.
    X.J. Wang, H. Wiehler, C.B. Ching, J. Chem. Eng. Data 48, 1092 (2003)CrossRefGoogle Scholar
  3. 3.
    T. Eriksson, S. Bjorkman, P. Hoglund, Eur. J. Clin. Pharmacol. 57, 365 (2001)CrossRefGoogle Scholar
  4. 4.
    M. Yoshikawa, A. Higuchi, in Encyclopedia of Membrane Science and Technology, edited by E.M.C. Hoek, V.V. Tarabara (John Wiley & Sons, Hoboken NJ, 2013)Google Scholar
  5. 5.
    E. Francotte, J. Chromatogr A 906, 379 (2001)CrossRefGoogle Scholar
  6. 6.
    H. Lorenz, A. Perlberg, D. Sapoundjiev, M.P. Elsner, A. Seidel-Morgenstern, Chem. Eng. Process. 45, 863 (2006)CrossRefGoogle Scholar
  7. 7.
    D. Kozma, CRC Handbook of Optical Resolution via Diastereomeric Salt Formation (CRC Press, Boca Raton, 2002)Google Scholar
  8. 8.
    J. Jacques, A. Collet, S. Wilen, Enantiomers, Racemates and Resolutions (John Wiley & Sons, New York, 1981)Google Scholar
  9. 9.
    T. Buhse, D.K. Kondepudi, B. Hoskins, Chirality 11, 343 (1999)CrossRefGoogle Scholar
  10. 10.
    K. Petruševska-Seebach, A. Seidel-Morgenstern, M.P. Elsner, Cryst. Growth Des. 11, 2149 (2011)CrossRefGoogle Scholar
  11. 11.
    V.M. Profir, M. Matsuoka, Colloid Surface A. 164, 315 (2000)CrossRefGoogle Scholar
  12. 12.
    W. Srimahaprom, A.E. Flood, J. Cryst. Growth 362, 88 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    M.P. Elsner, G. Ziomek, A. Seidel-Morgenstern, AIChE J. 55, 640 (2009)CrossRefGoogle Scholar
  14. 14.
    G. Levilain, M. Eicke, A. Seidel-Morgenstern, Cryst. Growth Des. 12, 5396 (2012)CrossRefGoogle Scholar
  15. 15.
    M.J. Eicke, G. Levilain, A. Seidel-Morgenstern, Cryst. Growth Des. 13, 1638 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Svang-Ariyaskul, W.J. Koros, R.W. Rousseau, Chem. Eng. Sci. 64, 1980 (2009)CrossRefGoogle Scholar
  17. 17.
    K. Würges, K. Petrusevska, S. Serci, S. Wilhelm, C. Wandrey, A. Seidel-Morgenstern, M.P. Elsner, S. Lütz, J. Mol. Catal. B: Enzym. 58, 10 (2009)CrossRefGoogle Scholar
  18. 18.
    K. Petrusevska-Seebach, K. Würges, A. Seidel-Morgenstern, S. Lütz, M.P. Elsner, Chem. Eng. Sci. 64, 2473 (2009)CrossRefGoogle Scholar
  19. 19.
    L. Addadi, J. van Mil, M. Lahav, J. Am. Chem. Soc. 103, 1249 (1981)CrossRefGoogle Scholar
  20. 20.
    L. Addadi, S. Weinstein, E. Gati, I. Weissbuch, M. Lahav, J. Am. Chem. Soc. 104, 4610 (1982)CrossRefGoogle Scholar
  21. 21.
    D.K. Kondepudi, M. Culha, Chirality 10, 238 (1998)CrossRefGoogle Scholar
  22. 22.
    D.K. Kondepudi, K.E. Crook, Cryst. Growth Des. 5, 2173 (2005)CrossRefGoogle Scholar
  23. 23.
    N. Doki, M. Yokota, S. Sasaki, N. Kubota, Cryst. Growth Des. 4, 1359 (2004)CrossRefGoogle Scholar
  24. 24.
    S. Srisanga, J.H. ter Horst, Cryst. Growth Des. 10, 1808 (2010)CrossRefGoogle Scholar
  25. 25.
    T. Izumi, D.G. Blackmond, Chem. Eur. J. 16, 3065 (2009)CrossRefGoogle Scholar
  26. 26.
    C.J. Orella, D.J. Kirwan, Ind. Eng. Chem. Res. 30, 1040 (1991)CrossRefGoogle Scholar
  27. 27.
    J.B. Dalton, C.L.A. Schmidt, J. Biol. Chem. 109, 241 (1935)Google Scholar
  28. 28.
    D. Binev, A. Seidel-Morgenstern, H. Lorenz, Cryst. Growth Des. 16, 1409 (2016)CrossRefGoogle Scholar
  29. 29.
    P. Kongsamai, A. Maneedaeng, A.E. Flood, in Proceeding of the 5th Regional Conference on Chemical Engineering, Pattaya, Thailand, 2013Google Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.School of Chemical Engineering, Suranaree University of TechnologyNakhon RatchasimaThailand
  2. 2.EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, University of StrathclydeGlasgow G1 1RDUK
  3. 3.Department of Chemical and Biomolecular EngineeringSchool of Energy Science and Engineering, Vidyasirimedhi Institute of Science and TechnologyRayongThailand

Personalised recommendations