The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 1051–1063 | Cite as

Quenching device for electrolytic aqueous solutions

Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications

Abstract

A simple device based on splat cooling to liquid nitrogen temperatures is presented. Its application to the amorphization of binary aqueous solutions by fast cooling is demonstrated. The fraction of amorphous material obtained is 90% in eutectic solutions. Diffraction patterns of the vitrified solutions are presented and discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.A. Angell, E.J. Sare, J. Chem. Phys. 52, 1058 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    C. Angell, E. Sare, Cryo-letters 1, 257 (1980)Google Scholar
  3. 3.
    O. Mishima, J. Chem. Phys. 123, 154506 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    C.J. Tainter, L. Shi, J.L. Skinner, J. Chem. Phys. 140, 134503 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    G. Vuillard, Ann. Chim (Paris) 2, 233 (1957)Google Scholar
  6. 6.
    A. Elarby-Aouizerat, J.F. Jal, C. Ferradou, J. Dupuy, P. Chieux, A. Wright, J. Phys. Chem. 87, 4170 (1983)CrossRefGoogle Scholar
  7. 7.
    M. Gordon, J.S. Taylor, J. Appl. Chem. 2, 493 (1952)CrossRefGoogle Scholar
  8. 8.
    W. Brostow, R. Chiu, I.M. Kalogeras, A. Vassilikou-Dova, Mat. Lett. 62, 3152 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Warkentin, J.P. Sethna, R.E. Thorne, Phys. Rev. Lett. 110, 015703 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    V. Berejnov, N.S. Husseini, O.A. Alsaied, R.E. Thorne, J. Appl. Crystallogr. 39, 244 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Allix, in Du verre au cristal: Nucléation, croissance et démixtion, de la recherche aux applications, edited by D.R. Neuville, L. Cormier, D. Caurant (EDP Sciences, Les Ulis, 2013), Chap. 17Google Scholar
  12. 12.
    C.A. Angell, Science 319, 582 (2008)CrossRefGoogle Scholar
  13. 13.
    V. Velikov, S. Borick, C.A. Angell, Science 294, 2335 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    T. Loerting, K. Winkel, M. Seidl, M. Bauer, C. Mitterdorfer, P.H. Handle, C.G. Salzmann, E. Mayer, J.L. Finney, D.T. Bowron, Phys. Chem. Chem. Phys. 13, 8783 (2011)CrossRefGoogle Scholar
  15. 15.
    P. Ball, H2O: A Biography of Water (Hachette, UK, 1999)Google Scholar
  16. 16.
    P. Jenniskens, D. Blake, ApJ 473, 1104 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    K. Lodders, ApJ 591, 1220 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    K. Wada, H. Tanaka, T. Suyama, H. Kimura, T. Yamamoto, ApJ 677, 1296 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    B. Gundlach, Y. Skorov, J. Blum, Icarus 213, 710 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    B. Gundlach, S. Kilias, E. Beitz, J. Blum, Icarus 214, 717 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    K. Ros, A. Johansen, Astr. & Astrophys. 552, A137 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    T. Koop, Proceedings of the International School of Physics Enrico Fermi (Water: Fundamentals as the Basis for Understanding the Environment and Promoting Technology) 187, 45 (2015)Google Scholar
  23. 23.
    E. Mayer, J. Appl. Phys. 58, 663 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    E. Burton, W. Oliver, Nature 135, 505 (1935)ADSCrossRefGoogle Scholar
  25. 25.
    M. Nič, J. Jirát, B. Košata, A. Jenkins, A. McNaught, eds., IUPAC Compendium of Chemical Terminology (IUPAC, 2009)Google Scholar
  26. 26.
    O. Mishima, L.D. Calvert, E. Whalley, Nature 310, 393 (1984)ADSCrossRefGoogle Scholar
  27. 27.
    J.S. Tse, D.D. Klug, C.A. Tulk, I. Swainson, E.C. Svensson, C.K. Loong, V. Shpakov, V.R. Belosludov, R.V. Belosludov, Y. Kawazoe, Nature 400, 647 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    R.J. Nelmes, J.S. Loveday, T. Strässle, C.L. Bull, M. Guthrie, G. Hamel, S. Klotz, Nat. Phys. 2, 414 (2006)CrossRefGoogle Scholar
  29. 29.
    K. Winkel, E. Mayer, T. Loerting, J. Phys. Chem. B 115, 14141 (2011)CrossRefGoogle Scholar
  30. 30.
    G.N. Ruiz, L.E. Bove, H.R. Corti, T. Loerting, Phys. Chem. Chem. Phys. 16, 18553 (2014)CrossRefGoogle Scholar
  31. 31.
    P. Brüggeller, E. Mayer, Nature 288, 569 (1980)ADSCrossRefGoogle Scholar
  32. 32.
    O. Mishima, J. Phys. Chem. B 115, 14064 (2011)CrossRefGoogle Scholar
  33. 33.
    H. Jones, Rep. Prog. Phys. 36, 1425 (1973)ADSCrossRefGoogle Scholar
  34. 34.
    R.C. Ruhl, Mater. Sci. Eng. 1, 313 (1967)CrossRefGoogle Scholar
  35. 35.
    T.C. Hansen, P.F. Henry, H.E. Fischer, J. Torregrossa, P. Convert, Meas. Sci. Technol. 19, 034001 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    A.-A. Ludl, L.E. Bove, A.M. Saitta, M. Salanne, T. Hansen, C.L. Bull, R. Gaal, S. Klotz, Phys. Chem. Chem. Phys. 17, 14054 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Rodríguez-Carvajal, Physica B 192, 55 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    T. Roisnel, J. Rodríguez-Carvajal, WinPLOTR: a windows tool for powder diffraction pattern analysis, in, Materials Science Forum (Transtec Publications; 1999, 2001), Vol. 378, p. 118Google Scholar
  39. 39.
    W.F. Kuhs, M.S. Lehmann, Water Sci. Rev. 2, 1 (1986)CrossRefGoogle Scholar
  40. 40.
    B. Klewe, B. Pedersen, Acta Crystallogr., Sect. B: Crystallogr. Crystal. Chem. 30, 2363 (1974)CrossRefGoogle Scholar
  41. 41.
    K. Muldrew, L.E. McGann, Ch. 6 phase diagrams (1997), http://people.ucalgary.ca/kmuldrew/cryo_course/cryo_chap6_1.html
  42. 42.
    H. Landolt, R. Börnstein, H. Borchers, W. Helling, E. Schmidt, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik: Technik. 2. Teil. [Stoffwerte und Verhalten von metallischen Werkstoffen.] Bandteil b. Sinterwerkstoffe. Schwermetalle (ohne Sonderwerkstoffe) (Springer-Verlag, 1964)Google Scholar
  43. 43.
    T. Williams, C. Kelley et al., Gnuplot 4.6: an interactive plotting program, http://gnuplot.sourceforge.net/ (2014)
  44. 44.
    A.A. Ludl, High pressure salty ice – exploring the phase diagram of electrolyte solutions in extreme conditions (2015)Google Scholar
  45. 45.
    L.E. Bove, S. Klotz, J. Philippe, A. Saitta, Phys. Rev. Lett. 106, 125701 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    L.E. Bove, C. Dreyfus, A. Polian, B. Bonello, I. Malfanti, A. Taschin, R. Torre, R.M. Pick, J. Chem. Phys. 134, 034514 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    A.-A. Ludl, L.E. Bove, D. Corradini, A.M. Saitta, M. Salanne, C.L. Bull, S. Klotz, Phys. Chem. Chem. Phys. 19, 1875 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Institut de minéralogie, de physique des matériaux et de cosmochimie, Université Pierre et Marie Curie, CNRS UMR 7590, Sorbonne UniversitésParisFrance
  2. 2.EPSL, Institute of Condensed Matter Physics, EPFLLausanneSwitzerland

Personalised recommendations