Coherent multiple light scattering in Faraday active materials


Wave propagation in multiple scattering media shows various kinds of coherent phenomena such as coherent backscattering [1, 2] or Anderson localization [3], both of which are intimately connected to the concept of reciprocity. Manipulating reciprocity in such media is a powerful tool to study these phenomena in experiments [4]. Here we discuss the manipulation of reciprocity in reflection and transmission geometry for the case of light propagation in magneto-optical media. We show new experiments on coherent backscattering and speckle correlations in strongly scattering samples containing Faraday active materials (CeF3) with transport mean free path in the μm range, at low temperatures (T < 10 K) and high fields (B = 18 T). Under such conditions we observe the effect of a Faraday rotation saturation in multiple scattering measurements.


  1. 1.

    M.P. Van Albada, Ad Lagendijk, Observation of weak localization of light in a random medium, Phys. Rev. Lett. 55, 2692 (1985)

    ADS  Article  Google Scholar 

  2. 2.

    P.-E. Wolf, G. Maret, Weak localization and coherent backscattering of photons in disordered media, Phys. Rev. Lett. 55, 2696 (1985)

    ADS  Article  Google Scholar 

  3. 3.

    P.W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958)

    ADS  Article  Google Scholar 

  4. 4.

    F.A. Erbacher, R. Lenke, G. Maret, Multiple light scattering in magneto-optically active media, Europhys. Lett. 21, 551 (1993)

    ADS  Article  Google Scholar 

  5. 5.

    M. Fink, Time reversal in acoustics, Contemp. Phys. 37, 95 (1996)

    ADS  Article  Google Scholar 

  6. 6.

    G. Bayer, T. Niederdränk, Weak localization of acoustic waves in strongly scattering media, Phys. Rev. Lett. 70, 3884 (1993)

    ADS  Article  Google Scholar 

  7. 7.

    F. Jendrzejewski, K. Müller, J. Richard, A. Date, T. Plisson, P. Bouyer, A. Aspect, V. Josse, Coherent backscattering of ultracold atoms, Phys. Rev. Lett. 109, 195302 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    G. Modugno, Anderson localization in Bose–Einstein condensates, Rep. Prog. Phys. 73, 102401 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, 2007)

  10. 10.

    D. Vollhardt, P. Wölfle, Self-consistent theory of Anderson localization, in Electronic Phase Transitions, edited by W. Hanke and Yu.V. Kopaev, Vol. 32 of Modern Problems in Condensed Matter Sciences (Elsevier, Amsterdam, 1992), Chap. 1, pp. 1–78

  11. 11.

    R. Lenke, G. Maret, Affecting weak light localization by strong magnetic fields, Phys. Scrip. 1993, 605 (1993)

    ADS  Article  Google Scholar 

  12. 12.

    T. Sperling, L. Schertel, M. Ackermann, G.J. Aubry, C.M. Aegerter, G. Maret, Can 3D light localization be reached in ‘hite paint’? New J. Phys. 18, 013039 (2016)

    ADS  Article  Google Scholar 

  13. 13.

    S.E. Skipetrov, J.H. Page, Red light for anderson localization, New J. Phys. 18, 021001 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    J.X. Zhu, D.J. Pine, D.A. Weitz, Internal reflection of diffusive light in random media, Phys. Rev. A 44, 3948 (1991)

    ADS  Article  Google Scholar 

  15. 15.

    S. Fiebig, C.M. Aegerter, W. Bührer, M. Störzer, E. Akkermans, G. Montambaux, G. Maret, Conservation of energy in coherent backscattering of light, Europhys. Lett. 81, 64004 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    C. Leycuras, H. Le Gall, M. Guillot, A. Marchand, Magnetic susceptibility and Verdet constant in rare earth trifluorides, J. Appl. Phys. 55, 2161 (1984)

    ADS  Article  Google Scholar 

  17. 17.

    Ad Buckingham, Pj Stephens, Magnetic optical activity, Ann. Rev. Phys. Chem. 17, 399 (1966)

    ADS  Article  Google Scholar 

  18. 18.

    M.J. Weber, Handbook of Optical Materials, Laser & Optical Science & Technology (CRC Press, Boca Raton, 2003)

  19. 19.

    M.J. Weber, Faraday rotator materials, Lawrence Livermore Natl. Lab. Rep. M-103 (1982)

  20. 20.

    David Lacoste, Diffusion de la lumière dans les milieux magneto-optiques et chiraux, PhD thesis (Université Joseph Fourier, Grenoble, 1999)

  21. 21.

    F.A. Erbacher, Licht-Vielfachstreuung in magneto-optisch aktiven Medien, PhD thesis (Universität Konstanz, Konstanz, 1992)

  22. 22.

    L. Schertel, Magneto-optical Faraday effect in multiple-scattering media, Master’s thesis (Universität Konstanz, Konstanz, December 2014)

  23. 23.

    R. Lenke, R. Lehner, G. Maret, Magnetic-field effects on coherent backscattering of light in case of Mie spheres, Europhys. Lett. 52, 620 (2000)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to G. J. Aubry or G. Maret.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schertel, L., Aubry, G.J., Aegerter, C.M. et al. Coherent multiple light scattering in Faraday active materials. Eur. Phys. J. Spec. Top. 226, 1409–1421 (2017).

Download citation