Skip to main content
Log in

A brief history of the introduction of generalized ensembles to Markov chain Monte Carlo simulations

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The most efficient weights for Markov chain Monte Carlo calculations of physical observables are not necessarily those of the canonical ensemble. Generalized ensembles, which do not exist in nature but can be simulated on computers, lead often to a much faster convergence. In particular, they have been used for simulations of first order phase transitions and for simulations of complex systems in which conflicting constraints lead to a rugged free energy landscape. Starting off with the Metropolis algorithm and Hastings’ extension, I present a minireview which focuses on the explosive use of generalized ensembles in the early 1990s. Illustrations are given, which range from spin models to peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  2. Z.W. Salsburg, J.D. Jacobson, W.S. Fickett, W.W. Wood, J. Chem. Phys. 30, 65 (1959)

    Article  ADS  Google Scholar 

  3. I.R. McDonald, K. Singer, Disc. Faraday Soc. 43, 40 (1967)

    Article  Google Scholar 

  4. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988)

    Article  ADS  Google Scholar 

  5. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63, 1658 (1988)

    Article  ADS  Google Scholar 

  6. R.J. Glauber, J. Math. Phys. 4, 294 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  7. W.K. Hastings, Biometrika 57, 97 (1970)

    Article  MathSciNet  Google Scholar 

  8. B.A. Berg, Markov Chain Monte Carlo Simulations and their Statistical Analysis (World Scientific, 2004)

  9. J.P. Valleau, D.N. Card, J. Chem. Phys. 57, 5457 (1972)

    Article  ADS  Google Scholar 

  10. G.M. Torrie, J.P. Valleau, Chem. Phys. Lett. 28, 578 (1974)

    Article  ADS  Google Scholar 

  11. G.N. Patey, J.P. Valleau, J. Chem. Phys. 63, 2334 (1975)

    Article  ADS  Google Scholar 

  12. G.M. Torrie, J.P. Valleau, J. Comp. Phys. 23, 187 (1977)

    Article  ADS  Google Scholar 

  13. J. Chandrasekar, S.F. Smith, W.K. Jorgensen, J. Am. Chem. Soc. 107, 154 (1985)

    Article  Google Scholar 

  14. Z. Lie, H.A. Scheraga, J. Mol. Struct. 179, 333 (1978)

    Article  Google Scholar 

  15. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, 1987)

  16. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  17. K. Binder, Phys. Rev. A 25, 1699 (1982)

    Article  ADS  Google Scholar 

  18. G. Bhanot, R. Salvador, S. Black, P. Carter, R. Toral, Phys. Rev. Lett. 59, 803 (1987)

    Article  ADS  Google Scholar 

  19. G. Parisi et al., Phys. Rev. Lett. 61, 1545 (1988)

    Article  ADS  Google Scholar 

  20. N.A. Alves, B.A. Berg, S. Sanielevici, Phys. Rev. Lett. 64, 3107 (1990)

    Article  ADS  Google Scholar 

  21. J. Potvin, C. Rebbi, Phys. Rev. Lett. 62, 3062 (1989)

    Article  ADS  Google Scholar 

  22. K. Kajanti, L. Kärkkäinen, K. Rummukainen, Phys. Lett. B 223, 213 (1989)

    Article  ADS  Google Scholar 

  23. B.A. Berg, T. Neuhaus, Phys. Lett. B 267, 249 (1991)

    Article  ADS  Google Scholar 

  24. B.A. Berg, T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992)

    Article  ADS  Google Scholar 

  25. C. Borgs, S. Kappler, Phys. Lett. A 171, 37 (1992)

    Article  ADS  Google Scholar 

  26. W. Janke, B.A. Berg, M. Katoot, Nucl. Phys. B 382, 649 (1992)

    Article  ADS  Google Scholar 

  27. C. Borgs, W. Janke, J. Phys. I France 2, 2011 (1992)

    Article  Google Scholar 

  28. E. Buffenoir, S. Wallon, Saclay preprint SPHT/92-077

  29. A. Billoire, T. Neuhaus, B.A. Berg, Nucl. Phys. B 413, 795 (1994)

    Article  ADS  Google Scholar 

  30. B.A. Berg, U. Hansmann, T. Neuhaus, Phys. Rev. B 47, 497 (1993)

    Article  ADS  Google Scholar 

  31. B.A. Berg, U. Hansmann, T. Neuhaus, Z. Phys. B 90, 229 (1993)

    Article  ADS  Google Scholar 

  32. W. Janke, S. Kappler, Phys. Rev. Lett. 74, 212 (1995)

    Article  ADS  Google Scholar 

  33. B.A. Berg, W. Janke, Phys. Rev. Lett. 98, 040602 (2007)

    Article  ADS  Google Scholar 

  34. B.A. Berg, T. Celik, Phys. Rev. Lett. 69, 2292 (1992)

    Article  ADS  Google Scholar 

  35. B.A. Berg, T. Celik, U. Hansmann, Phys. Rev. B 50, 16444 (1994)

    Article  ADS  Google Scholar 

  36. B.A. Berg, A. Billoire, W. Janke, Phys. Rev. B 61, 12143 (2000)

    Article  ADS  Google Scholar 

  37. U. Hansmann, Y. Okamoto, J. Comp. Chem. 14, 1333 (1993)

    Article  Google Scholar 

  38. U. Hansmann, Y. Okamoto, J. Chem. Phys. 110, 1267 (1999)

    Article  ADS  Google Scholar 

  39. U. Hansmann, Y. Okamoto, J. Chem. Phys. 111, 1339 (1999)

    Article  ADS  Google Scholar 

  40. U. Hansmann, Y. Okamoto, Ann. Rev. Comp. Phys., edited by D. Stauffer (World Scientific, 1999) vol VI, pp. 129–157

  41. A.P. Lyubartsev, A.A. Martsinovski, S.V. Shevkanov, P.N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992)

    Article  ADS  Google Scholar 

  42. E. Marinari, G. Parisi, Europhys. Lett. 19, 451 (1992)

    Article  ADS  Google Scholar 

  43. G.J. Geyer, in Computing Science and Statistics, Proceedings of the 23rd Symposium on the Interface, edited by E.M. Keramidas, S.M. Kaufman (Interface Foundation, Fairfax, VA, 1991) pp. 156–163

  44. K. Hukusima, K. Nemoto, J. Phys. Soc. Japan 65, 1604 (1996)

    Article  ADS  Google Scholar 

  45. R.H. Swendsen, J.-S. Wang, Phys. Rev. Lett. 57, 2607 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  46. U.H. Hansmann, Chem. Phys. Lett. 281, 140 (1997)

    Article  ADS  Google Scholar 

  47. E. Bittner, A. Nuß baumer, W. Janke, Phys. Rev. Lett. 101, 130603 (2008)

    Article  ADS  Google Scholar 

  48. Y. Sugita, Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999)

    Article  ADS  Google Scholar 

  49. T. Neuhaus, J.S. Hager, J. Stat. Phys. 113, 47 (2003)

    Article  Google Scholar 

  50. B.A. Berg, J. Stat. Phys. 82, 323 (1996)

    Article  ADS  Google Scholar 

  51. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  52. E. Bittner, W. Janke, in preparation

  53. A. Bazavov, B.A. Berg, Comp. Phys. Comm. 180, 2339 (2009)

    Article  ADS  Google Scholar 

  54. T. Vogel, Y.W. Li, T. Wüst, D.P. Landau, Phys. Rev. Lett. 110, 210603 (2013)

    Article  ADS  Google Scholar 

  55. J. Zierenberg, M. Marenz, W. Janke, Comp. Phys. Comm. 184, 1155 (2013)

    Article  ADS  Google Scholar 

  56. T. Vogel, D. Perez, Phys. Rev. Lett. 115, 190602 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd A. Berg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, B.A. A brief history of the introduction of generalized ensembles to Markov chain Monte Carlo simulations. Eur. Phys. J. Spec. Top. 226, 551–565 (2017). https://doi.org/10.1140/epjst/e2016-60236-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60236-2

Navigation