The European Physical Journal Special Topics

, Volume 226, Issue 4, pp 779–788 | Cite as

Anisotropic XY antiferromagnets in a field

Regular Article
Part of the following topical collections:
  1. Recent Advances in Phase Transitions and Critical Phenomena

Abstract

Classical anisotropic XY antiferromagnets in a field on square and simple cubic lattices are studied using mainly Monte Carlo simulations. While in two dimensions the ordered antiferromagnetic and spin-flop phases are observed to be separated by a narrow disordered phase, a line of direct transitions of first order between the two phases and a bicritical point are found in three dimensions. Results are compared to previous findings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Néel, Ann. Phys. (Paris) 18, 5 (1932)Google Scholar
  2. 2.
    C.J. Gorter, T. van Peski-Tinbergen, Physica (Utr.) 22, 273 (1956)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Kosterlitz, D.R. Nelson, M.E. Fisher, Phys. Rev. B 13, 412 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    K.-S. Liu, M.E. Fisher, J. Low. Temp. Phys. 10, 655 (1973)ADSCrossRefGoogle Scholar
  5. 5.
    M.E. Fisher, D.R. Nelson, Phys. Rev. Lett. 32, 1350 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    A. Aharony, J. Stat. Phys. 110, 659 (2003)CrossRefGoogle Scholar
  7. 7.
    Y. Shapira, S. Foner, Phys. Rev. B 1, 3083 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    H. Rohrer, Ch. Gerber, Phys. Rev. Lett. 38, 909 (1977)ADSCrossRefGoogle Scholar
  9. 9.
    G.P. Felcher, R. Kleb, Europhys. Lett. 36, 455 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    K. Ohgushi, Y. Ueda, Phys. Rev. Lett. 95, 217202 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    R.S. Freitas, A. Paduan-Filho, C.C. Becerra, J. Phys.: Condens. Matter 28, 126007 (2016)ADSGoogle Scholar
  12. 12.
    K.Y. Szeto, S.T. Chen, G. Dresselhaus, Phys. Rev. B 33, 3453 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    T. Thio, C.Y. Chen, B.S. Freer, D.R. Gabbe, H.P. Jenssen, M.A. Kastner, P.J. Picone, N.W. Preyer, R.J. Birgeneau, Phys. Rev. B 41, 231 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    R. Leidl, R. Klingeler, B. Büchner, M. Holtschneider, W. Selke, Phys. Rev. B 73, 224415 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    T. Kroll, R. Klingeler, J. Geck, B. Büchner, W. Selke, M. Hücker, A. Gukasov, J. Magn. Magn. Mat. 290, 306 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    N. Barbero, T. Shiroka, C.P. Landee, M. Pikulski, H.-R. Ott, J. Mesot, Phys. Rev. B 93, 054425 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    K. Binder, D.P. Landau, Phys. Rev. B 13, 1140 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    D.P. Landau, K. Binder, Phys. Rev. B 17, 2328 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    M. Holtschneider, W. Selke, R. Leidl, Phys. Rev. B 72, 064443 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    M. Holtschneider, S. Wessel, W. Selke, Phys. Rev. B 75, 224417 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    C. Zhou, D.P. Landau, T.C. Schulthess, Phys. Rev. B 76, 024433 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    M. Holtschneider, W. Selke, Eur. Phys. J. B 62, 147 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    W. Selke, Phys. Rev. E 83, 042102 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    W. Selke, Phys. Rev. E 87, 014101 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    S. Hu, S.-H. Tsai, D.P. Landau, Phys. Rev. E 89, 032118 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    R.T.S. Freire, J.A. Plascak, Phys. Rev. E 91, 032146 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    P. Calabrese, A. Pelissetto, E. Vicari, Phys. Rev. B 67, 054505 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    R. Folk, Yu. Holovatch, G. Moser, Phys. Rev. E 78, 041125 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    A. Eichhorn, D. Mesterhazy, M.M. Scherer, Phys. Rev. E 88, 042141 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    J. Borchardt, A. Eichhorn, Phys. Rev. E 94, 042105 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    H. Matsuda, T. Tsuneto, Prog. Theoret. Phys. Suppl. 46, 411 (1970)ADSCrossRefGoogle Scholar
  32. 32.
    D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2014)Google Scholar
  33. 33.
    K. Binder, Z. Phys. B 43, 119 (1981)ADSCrossRefGoogle Scholar
  34. 34.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)ADSCrossRefGoogle Scholar
  35. 35.
    N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)ADSCrossRefGoogle Scholar
  36. 36.
    X.S. Chen, V. Dohm, Phys. Rev. E 70, 056136 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    W. Selke, L.N. Shchur, J. Phys. A: Math. Gen. 38, L739 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    G. Kamieniarz, H.W.J. Blöte, J. Phys. A: Math. Gen. 26, 201 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    K. Binder, D.P. Landau, Phys. Rev. B 30, 1477 (1984)ADSCrossRefGoogle Scholar
  40. 40.
    A.W. Sandvik, Phys. Rev. Lett. 104, 177201 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    M.E. Fisher, A.N. Berker, Phys. Rev. B 26, 2507 (1982)ADSCrossRefGoogle Scholar
  42. 42.
    W. Janke, in B. Dünweg, D.P. Landau, A.I. Milchev (eds.), Computer Simulations of Surfaces and Interfaces (Kluwer Academics, 2003), p. 111-135Google Scholar
  43. 43.
    M. Hasenbusch, Phys. Rev. B 82, 174434 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    A. Pelissetto, E. Vicari, Phys. Reports 368, 549 (2002)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    M. Hasenbusch, T. Török, J. Phys. A: Math. Gen. 32, 6361 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. B 63, 214503 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Institute for Theoretical Solid State Physics, RWTH Aachen UniversityAachenGermany

Personalised recommendations