Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 943–955 | Cite as

Evaluation of the solubility constants of the hydrated solid phases in the H2O-Al2O3-SO3 ternary system

  • A. Teyssier
  • V. Lagneau
  • J. M. Schmitt
  • J. J. Counioux
  • C. Goutaudier
Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications

Abstract

During the acid processing of aluminosilicate ores, the precipitation of a solid phase principally consisting of hydrated aluminium hydroxysulfates may be observed. The experimental study of the H2O-Al2O3-SO3 ternary system at 25 C and 101 kPa enabled to describe the solid-liquid equilibra and to identify the nature, the composition and the solubility of the solid phases which may form during the acid leaching. To predict the appearance of these aluminium hydroxysulfates in more complex systems, their solubility constants were calculated by modelling the experimental solubility results, using a geochemical reaction modelling software, CHESS. A model for non-ideality correction, based on the B-dot equation, was used as it was suitable for the considered ion concentration range. The solubility constants of three out of four solid phases were calculated: 104.08 for jurbanite (Al(SO4)(OH).5H2O), 1028.09 for the solid T (Al8(SO4)5(OH)14.34H2O) and 1027.28 for the solid V (Al10(SO4)3(OH)24.20H2O). However the activity correction model was not suitable to determine the solubility constant of alunogen (Al2(SO4)3.15.8H2O), as the ion concentrations of the mixtures were too high and beyond the allowable limits of the model. Another ionic activity correction model, based on the Pitzer equation for example, must be applied to calculate the solubility constant of alunogen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Debye, E. Huckel, Z. Phys. 24, 305 (1923)Google Scholar
  2. 2.
    P. Debye, E. Huckel, Phys. Z. 24, 185 (1923)Google Scholar
  3. 3.
    J.N. Brönsted, V.K.L. Mer, J. Amer. Chem. Soc. 46, 555 (1924)CrossRefGoogle Scholar
  4. 4.
    C.W. Davies, J. Chem. Soc. 1930, 2421 (1930)CrossRefGoogle Scholar
  5. 5.
    C.W. Davies, J. Chem. Soc. (Resumed) 1938, 2093 (1938)CrossRefGoogle Scholar
  6. 6.
    C.W. Davies, J. Chem. Soc. (Resumed) 1945, 460 (1945)CrossRefGoogle Scholar
  7. 7.
    C.W. Davies, Ion association (Butterworths, London, 1962)Google Scholar
  8. 8.
    H.C. Helgeson, Mineralogical Society of America Special Paper Three 3, 155 (1970)Google Scholar
  9. 9.
    H.C. Helgeson, D.H. Kirkham, G.C. Flowers, Amer. J. Sci. 281, 1249 (1981)CrossRefGoogle Scholar
  10. 10.
    G.M. Anderson, D.A. Crerar, Thermodynamics in Geochemistry the Equilibrium Model (Oxford University Press, New York, Oxford, 1993)Google Scholar
  11. 11.
    J. Sánchez-España, I. Yusta, M. Diez-Ercilla, Appl. Geochem. 26, 1752 (2011)CrossRefGoogle Scholar
  12. 12.
    A.M. Jones, R.N. Collins, T.D. Waite, Geochimica Et Cosmochimica Acta 75, 965 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    H.G. Dill, Earth-Science Reviews 53, 35 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    M. Shum, L. Lavkulich, Environ. Geol. 38, 59 (1999)CrossRefGoogle Scholar
  15. 15.
    J. Prietzel, C. Hirsch, Euro. J. Soil Sci. 49, 669 (1998)CrossRefGoogle Scholar
  16. 16.
    D.K. Nordstrom, Geochimica Et Cosmochimica Acta 46, 681 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    F. Adams, B.F. Hajek, Soil Sci. 126, 169 (1978)CrossRefGoogle Scholar
  18. 18.
    F. Adams, Z. Rawajfih, Soil Sci. Soc. Am. J. 41, 686 (1977)CrossRefGoogle Scholar
  19. 19.
    H. Bassett, T.H. Goodwin, J. Chem. Soc. (Resumed) 1949, 2239 (1949)CrossRefGoogle Scholar
  20. 20.
    A. Teyssier, J.-M. Schmitt, R. Chiriac, C. Goutaudier, Fluid Phase Equilib. 409, 388 (2016)CrossRefGoogle Scholar
  21. 21.
    E. Jänecke, Zeitschrift für anorganische Chemie 71, 1 (1911)CrossRefGoogle Scholar
  22. 22.
    J. Van der Lee, L. De Windt, CHESS Tutorial and Cookbook, Updated for Version 3.0. User’s Manual. Rapport Technique, École des Mines de Paris, CIG/ARMINES, LHM/RD/02/13, 2002Google Scholar
  23. 23.
    T.J. Wolery, Report No. UCRL-MA-110662 PT I, 1992Google Scholar
  24. 24.
    N. van Breemen, Genesis and Solution Chemistry of Acid Sulphate Soils in Thailand (Pudoc, 1976)Google Scholar
  25. 25.
    N. van Breemen, Soil Sci. Soc. Amer. J. 37, 694 (1973)CrossRefGoogle Scholar
  26. 26.
    C.M. Bethke, Geochemical and Biogeochemical Reaction Modeling, 2nd edn. (Cambridge University Press, Cambridge, New York, Melbourne, 2008)Google Scholar
  27. 27.
    M.P. Elizalde, J.L. Aparicio, Talanta 42, 395 (1995)CrossRefGoogle Scholar
  28. 28.
    G. Scatchard, J. Amer. Chem. Soc. 90, 3124 (1968)CrossRefGoogle Scholar
  29. 29.
    G. Scatchard, J. Amer. Chem. Soc. 83, 2636 (1961)CrossRefGoogle Scholar
  30. 30.
    W.F. Linke, A. Seidell, Solubilities Inorganic and Metal-organic Compounds Volume I A-Ir a Compilation of Solubility Data from the Periodical Literature, 4th edn. (D. Van Nostrand, Princeton, Toronto, London, 1958)Google Scholar
  31. 31.
    R.A. Robinson, R.H. Stokes, Transactions of the Faraday Society 45, 612 (1949)CrossRefGoogle Scholar
  32. 32.
    R.A. Robinson, J. Amer. Chem. Soc. 59, 84 (1937)CrossRefGoogle Scholar
  33. 33.
    S.L. Clegg, J.A. Rard, K.S. Pitzer, J. Chem. Soc., Faraday Transactions 90, 1875 (1994)CrossRefGoogle Scholar
  34. 34.
    K.S. Pitzer, in Activity Coefficients in Electrolyte Solutions, edited by K.S. Pitzer (CRC Press, Boca Raton, 1991), p. 279Google Scholar
  35. 35.
    K.S. Pitzer, G. Mayorga, J. Solution Chem. 3, 539 (1974)CrossRefGoogle Scholar
  36. 36.
    K.S. Pitzer, G. Mayorga, J. Phys. Chem-Us 77, 2300 (1973)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  • A. Teyssier
    • 1
  • V. Lagneau
    • 2
  • J. M. Schmitt
    • 3
  • J. J. Counioux
    • 1
  • C. Goutaudier
    • 1
  1. 1.Université de Lyon, Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et InterfacesVilleurbanneFrance
  2. 2.Mines ParisTechFontainebleau cedexFrance
  3. 3.AREVA, BU MinesParis la Défense cedexFrance

Personalised recommendations