Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 1075–1089 | Cite as

Thermodynamic description of the Holmium-Germanium binary system

  • Saïd Kardellass
  • Colette Servant
  • Najim Selhaoui
Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications

Abstract

The Holmium-Germanium system was thermodynamically assessed by the CALPHAD technique based on the available experimental data including the thermodynamic properties and phase equilibria. The solution phases, i.e. liquid, hcp_A3 (Ho), and diamond_A4 (Ge), were described by the substitutional solution model with the Redlich-Kister equation, and all the intermetallic compounds HoGe1.7 (_LT and _HT), HoGe1.8, HoGe2.7, Ho11Ge10, Ho3+Ge4, Ho5Ge4, HoGe, and HoGe1.5 (_LT and _HT) in the Holmium-Germanium system were treated as stoichiometric phases. The compound with a homogeneity range Ho5Ge3, is modeled using two sublattices as (Ho,Ge)0.375(Ho,Ge)0.625. A set of self-consistent thermodynamic parameters for the Holmium-Germanium system was finally obtained. The calculated phase diagram and thermodynamic properties agree reasonably with the literature experimental data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.N. Eremenko, I.M. Obushenko, Powder Metallurgy and Metal Ceramics 19, 482 (1980)Google Scholar
  2. 2.
    G.V. Samsonov, V.N. Bondarev, Germanides [in Russian] (Metallurgiya, Moscow, 1968)Google Scholar
  3. 3.
    S.A. Nikitin, I.A. Ovtchenkova, Y.V. Skourski, A.V. Morozkin, J. Alloys Comp. 345, 50 (2002)CrossRefGoogle Scholar
  4. 4.
    L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals (Academic Press, New York, 1970)Google Scholar
  5. 5.
    U.R. Kattner, H. Seifert, Calphad 34, 385 (2010)CrossRefGoogle Scholar
  6. 6.
    V.R. Sidorko, L.V. Goncharuk, Powder Metallurgy and Metal Ceramics 53, 458 (2014)CrossRefGoogle Scholar
  7. 7.
    V.N. Eremenko, I.M. Obushenko, Yu.I. Buyanov, Dop. AN URSR. Ser. A 7, 87 (1980)Google Scholar
  8. 8.
    Y.-H. Zhuang, Y.-Y. Nie, J.-Q. Li, J. Less-Com. Met. 167, 640 (1991)CrossRefGoogle Scholar
  9. 9.
    Yu.I. Buyanov, T.Ya. Velikanova, P.S. Martsenyuk et al., Inst. Probl. Materialoved. NAN UKrainy, Kiev, Preprint No. 98–2 (1998)Google Scholar
  10. 10.
    K. Sekizawa, J. Phys. Soc. Jpn 21, 1137 (1966)ADSCrossRefGoogle Scholar
  11. 11.
    G.I. Batalin, E.A. Beloborodova, I.V. Nikolaenko, in Proc. 4th Sci. All-Union Conf. Constitution and Properties of Metal and Sludge Melts [in Russian], Part 2, Sverdlovsk (1980)Google Scholar
  12. 12.
    I.V. Nikolaenko, Author’s Abstract of PhD thesis, Kiev, 1981Google Scholar
  13. 13.
    N.P. Gorbachuk, V.R. Sidorko, S.N. Kirienko, I.M. Obushenko, Powder Metallurgy and Metal Ceramics 47, 451 (2008)CrossRefGoogle Scholar
  14. 14.
    A.S. Bolgar, A.I. Kriklya, A.P. Suodis, A.V. Blinder, Zh. Fiz. Khim 72, 439 (1998)Google Scholar
  15. 15.
    L.V. Goncharuk, V.R. Sidorko, I.M. Obushenko. Powder Metallurgy and Metal Ceramics 51, 329 (2012)CrossRefGoogle Scholar
  16. 16.
    S.V. Meschel, O.J. Kleppa, J. Alloys Compounds 247, 521 (1997)CrossRefGoogle Scholar
  17. 17.
    A.K. Niessen, F.R. de Boer, R. Boom et al., Calphad 7, 511 (1983)CrossRefGoogle Scholar
  18. 18.
    N.P. Gorbachuk, V.R. Sidorko, L.M. Kulikov, I.M. Obushenko, S.N. Kirienko, Powder Metallurgy and Metal Ceramics 46, 478 (2007)CrossRefGoogle Scholar
  19. 19.
    A.T. Dinsdale, SGTE data for pure elements, Calphad 15, 317 (1991)CrossRefGoogle Scholar
  20. 20.
    G. Inden, in Proceeding of the 5th Project Meeting CALPHAD, Max Planck Institute for Iron Research. Düsseldorf: Max-Planck-Institut für Eisenforschung GmbH. p. III-4.1 (1976)Google Scholar
  21. 21.
    G. Inden, Physica B + C 103, 82 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    M. Hillert, M. Jarl, Calphad 2, 227 (1987)CrossRefGoogle Scholar
  23. 23.
    G. Grimvall, Thermophysical Properties of Materials (Elsevier, Amsterdam, 1999)Google Scholar
  24. 24.
    B. Jansson, Ph.D. thesis, Division of Physical Metallurgy, Royal Institute of Technology, Stockholm, Sweden, 1984Google Scholar
  25. 25.
    B. Sundman, B. Jansson, J.O. Andersson, Calphad 2, 153 (1985)CrossRefGoogle Scholar
  26. 26.
    O. Redlich, A.T. Kister, Ind. Eng. Chem. 40, 345 (1948)CrossRefGoogle Scholar
  27. 27.
    C.H. Lupis, Chemical Thermodynamics of Metals (Prentice-Hall Inc.: North-Holland, 1983)Google Scholar
  28. 28.
    K.C. Kumar, P. Wollants, J. Alloy Compd. 320, 189 (2001)CrossRefGoogle Scholar
  29. 29.
    B. Sundman, B. Janson, J.O. Andersson, Calphad 9, 153 (1985)CrossRefGoogle Scholar
  30. 30.
    M. Hillert, L.I. Staffansson, Acta Chem. Scand. 24, 3618 (1970)CrossRefGoogle Scholar
  31. 31.
    A.K. Niessen, F.R. De Boer, R. Boom et al., Calphad 7, 51 (1983)CrossRefGoogle Scholar
  32. 32.
    V.N. Eremenko, I.M. Obushenko, Yu.I. Buyanov, Dopov. Akad. Nauk. Ukr. RSR Ser. A 42, 91 (1980)Google Scholar
  33. 33.
    D. Hohnke, E. Parthé, Acta Crystallogr. 20, 572 (1966)CrossRefGoogle Scholar
  34. 34.
    Z.M. Shpyrka, Ph.D. Chemistry Thesis, L’viv, 1991Google Scholar
  35. 35.
    T.B. Massalski, Binary Alloy Phase Diagrams, 2nd edn., Vol. 2 (Mater. Info. Soc., Ohio, 1990)Google Scholar
  36. 36.
    A. Dębski, R. Dębski, W. Gasior, Archives of Metallurgy and Materials 59, 1337 (2014)Google Scholar
  37. 37.
    S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, W.A. Oates, R.S. Fetzer, J. Phase Equilib. 22, 373 (2001)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Laboratoire de Thermodynamique et Énergétique, LTE, Université Ibn-ZohrAgadirMorocco
  2. 2.Laboratoire de Physicochimie de l’État Solide, ICMMO, Université Paris-SudOrsay CedexFrance

Personalised recommendations