Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 967–975 | Cite as

Phase diagram of argon: The prediction of the coexisting liquid and vapor densities of argon near the critical point

Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications

Abstract

This work reports on the prediction of the liquid-vapor densities as well as the rectilinear diameter of argon in the vicinity of the critical region. A previously formulated equation of state (EOS) [A. Rizi, A. Abbaci, J. Mol. Liq. 171, 64 (2012)] based on the Landau-Ginzburg crossover formalism for argon is used for this purpose. We thus present a comparison of the crossover model equation of argon with the experimental phase equilibrium data and describe the singularity of the rectilinear diameter very close to the critical point. The obtained results show that percent deviations between the experimental data and the calculated rectilinear diameter from the crossover model do not exceed 0.05%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Fisher, Lectures Notes in Physics, edited by F.J.W. Hahne (Springer-Verlag, Berlin, 1982), Vol. 186 Google Scholar
  2. 2.
    A. Abbaci, M.H. Samar, High Temp. High Press. 35/36, 691 (2007)CrossRefGoogle Scholar
  3. 3.
    Z.Y. Chen, A. Abbaci, S. Tang, J.V. Sengers, Phys. Rev. A 42, 4470 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    A. Abbaci, Ph.D. thesis, University of Maryland, 1991Google Scholar
  5. 5.
    A. Abbaci, A. Rizi, J. Mol. Liq. 171, 64 (2012)CrossRefGoogle Scholar
  6. 6.
    J. Weiner, K.H. Langley, N.C. Ford, Jr., Phys. Rev. Lett. 32, 879 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    M. Ley-Koo, M.S. Green, Phys. Rev. A 23, 2650 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    M.W. Pestak, R.E. Goldstein, M.W.H. Chan, J.R. de Bruyn, D.A. Balzarini, N.W. Ashcroft, Phys. Rev. B 36, 599 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    A. Abbaci, Iranian J. Chem. & Chem. Engn. 24, 103 (2004)Google Scholar
  10. 10.
    A. Abbaci, A. Berrezeg, J. Soc. Alg. Chim. 13, 9 (2003)Google Scholar
  11. 11.
    L. Cailletet, E.C. Mathias, R. Acad. Sci. 102, 1202 (1886)Google Scholar
  12. 12.
    M. Ley-Koo, M.S. Green, Phys. Rev. A 16, 2483 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    R. Gilgen, R. Kleinrahm, W. Wagner, J. Chem. Thermodyn. 26, 383 (1994)CrossRefGoogle Scholar
  14. 14.
    A.V. Voronel, V.G. Gorbunova, V.A. Anisimov, N.G. Shmakov, V.V. Shchekochikhina, Sov. Phys. JETP 36, 505 (1973)ADSGoogle Scholar
  15. 15.
    A. Abbaci, Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry 7, 281 (2011)Google Scholar
  16. 16.
    E.R. Goldstein, A. Parola, Acc. Chem. Res. 22, 77 (1989)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Laboratoire de synthèse et biocatalyse organique, Département de Chimie, Faculté des Sciences, Université Badji MokhtarAnnabaAlgeria

Personalised recommendations