Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 1097–1106 | Cite as

Chemical interaction and thermodynamic properties of (Cu,Ni)-Zr glass-forming alloys

  • T. Kulikova
  • A. Maiorova
  • V. Bykov
  • K. Shunyaev
Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications

Abstract

The model of ideal associative solutions was applied to analyze the influence of strong chemical interaction in (Cu,Ni)-Zr melts depending on their glass-forming ability. Within the model framework thermodynamic properties of both Ni-Zr and Cu-Zr systems in the liquid state were calculated. The formation enthalpies of intermetallic compounds of these systems were redefined by the matching procedure, taking into account the additive manifestation of chemical interaction. It was suggested that directed (covalent) interaction causes formation of associative complexes which impedes diffusion and slows down crystallization. The intensity of interparticle interaction in these alloys is found to have no decisive influence on their glass-forming ability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.P. Royall, S.R. Williams. Phys. Rep. 560, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    N.E. Dubinin, L.D. Son, N.A. Vatolin, Defect Diffus. Forum 263, 105 (2007)CrossRefGoogle Scholar
  3. 3.
    L.D. Son, R.E. Ryltsev, V.E. Sidorov, J. Non-Cryst. Solids 353, 3722 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    N.E. Dubinin, J. Phys.: Conf. Ser. 144, 012115 (2009)Google Scholar
  5. 5.
    L. Zhang, E. Martinez, A. Caro, X.Y. Liu, M.J. Demkowicz, Mod. Simul. Mater. Sci. Eng. 21, 025005 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    N.E. Dubinin, N.A. Vatolin, V.V. Filippov, Rus. Chem. Rev. 83, 987 (2014) [erratum: Rus. Chem. Rev. 84, C01 (2015)]CrossRefGoogle Scholar
  7. 7.
    S.K. Yadav, S. Lamichhane, L.N. Jha, N.P. Adhikari, D. Adhikari, Phys. Chem. Liq. 54, 370 (2016)CrossRefGoogle Scholar
  8. 8.
    T.V. Kulikova, A.V. Mayorova, A.B. Shubin, V.A. Bykov, K.Yu. Shunyaev, Kovove Mater. 53, 133 (2015)Google Scholar
  9. 9.
    I. Prigogine, R. Defay, Chemical Thermodynamics (Longmans Green and Co, London, NY, Toronto, 1954)Google Scholar
  10. 10.
    F. Sommer, Z. Metallkd. 73, 72 (1982)Google Scholar
  11. 11.
    K. Wasai, K. Mukai, J. Japan Inst. Met. 45, 593 (1981)CrossRefGoogle Scholar
  12. 12.
    K. Wasai, K. Mukai, J. Japan Inst. Met. 46, 266 (1982)CrossRefGoogle Scholar
  13. 13.
    T.V. Kulikova, G.K. Moiseev, K.Yu. Shunyaev, N.I. Il’inykh, V.A. Bykov, V.E. Sidorov, Russ. J. Phys. Chem. A 80, 1757 (2006)CrossRefGoogle Scholar
  14. 14.
    A.B. Shubin, K.Yu. Shunyaev, T.V. Kulikova, Russ. Metall. 5, 364 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    F. Sommer, D. Choi, Z. Metallkd. 80, 263 (1989)Google Scholar
  16. 16.
    N. Wang, C. Li, Z. Du, F. Wang, W. Zhang, Calphad 30, 461 (2006)CrossRefGoogle Scholar
  17. 17.
    D.H. Kang, I.H. Jung, Intermetallics 18, 815 (2010)CrossRefGoogle Scholar
  18. 18.
    M.A. Turchanin, P.G. Agraval, A.R. Abdulov, Powder Metall. Met. C. 47, 428 (2008)CrossRefGoogle Scholar
  19. 19.
    K.J. Zeng, M. Hamalainen, H.L. Lukas, Phase Equilib. 15, 577 (1994)CrossRefGoogle Scholar
  20. 20.
    A. Zaitsev, N. Zaitseva, J. Alekseeva, Y. Nechaev, Phys. Chem. Chem. Phys. 4, 4185 (2003)CrossRefGoogle Scholar
  21. 21.
    S.H. Zhou, R.E. Napolitano, Acta Mater. 58, 2186 (2010)CrossRefGoogle Scholar
  22. 22.
    J. Du, B. Wen, R. Melnik, Y. Kawazoe, J. Alloys Comp. 588, 96 (2014)CrossRefGoogle Scholar
  23. 23.
    N. Saunders, Calphad 9, 297 (1985)MathSciNetCrossRefGoogle Scholar
  24. 24.
    G. Ghosh, G.B. Olson, Acta Mater. 55, 3281 (2007)CrossRefGoogle Scholar
  25. 25.
    K. Yamaguchi, Y-Ch. Song, T. Yoshida, K. Itagaki, J. Alloys Comp. 452, 73 (2008)CrossRefGoogle Scholar
  26. 26.
    O.J. Kleppa, S. Watanabe, Metal. Trans. B 13, 391 (1982)CrossRefGoogle Scholar
  27. 27.
    T.P. Weihs, T.W. Barbee, M.A. Wall, J. Mater. Res. 11, 1403 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Y.-M. Kim, B.-J. Lee, J. Mater. Res. 23, 1095 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    I. Ansara, A. Pasturel, K.H.J. Buschow, Phys. Status Solidi. 69, 447 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    J.C. Gachon, J. Hertz, Calphad 7, 1 (1983)CrossRefGoogle Scholar
  31. 31.
    M.P. Henaff, C. Colinet, A. Pasturel, K.H.J. Buschow, J. Appl. Phys. 56, 307 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    A.I. Zaitsev, N.E. Zaitseva, E.Kh. Shakhpazov, A.A. Kodentsov, Phys. Chem. Chem. Phys. 4, 6047 (2002)CrossRefGoogle Scholar
  33. 33.
    G. Ghosh, J. Mater. Res. 9, 598 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    J. Du, B. Wen, R. Melnik, Y. Kawazo, Intermetallics 54, 110 (2014)CrossRefGoogle Scholar
  35. 35.
    F.H.M. Spit, J.W. Drijver, S. Radelaar, Scripta Metall. 14, 1071 (1980)CrossRefGoogle Scholar
  36. 36.
    G. Moiseev, J. Leitner, J. Sestak, V. Jhukovski, Thermochim. Acta 280/281, 511 (1996)CrossRefGoogle Scholar
  37. 37.
    G. Moiseev, N. Vatolin, J. Thermal Analysis 54, 363 (1998)CrossRefGoogle Scholar
  38. 38.
    G.K. Moiseev, N.A. Vatolin, Dokl. Phys. Chem. 351, 316 (1996)Google Scholar
  39. 39.
    G.K. Moiseev, N.A. Vatolin, Dokl. Phys. Chem. 367, 196 (1999)Google Scholar
  40. 40.
    T.V. Kulikova, A.V. Majorova, K.Yu. Shunyaev, R.E. Ryltsev, Physica B 466–467, 90 (2015)CrossRefGoogle Scholar
  41. 41.
    H. Okamoto, J. Phase Equilib. Diff. 33, 417 (2012)CrossRefGoogle Scholar
  42. 42.
    N. Bochvar, O. Abdulov, T. Dobatkina, M. Kareva, O. Semenova, in Ni-Zr Binary Phase Diagram Evaluation edited by G. Effenberg (Materials Science International, Stuttgart, 2015)Google Scholar
  43. 43.
    P.M. Robinson, M.B. Beaver, in Intermetallic compounds edited by J.H. Westbrook(Wiley, New York, 1967)Google Scholar
  44. 44.
    M.A. Turchanin, Powder Metall. Met. Ceram. 39, 253 (1997)CrossRefGoogle Scholar
  45. 45.
    P. Franke, D. Neuschütz, Landolt-Börnstein – Group IV Physical Chemistry 19B4 (Springer, Berlin, 2006)Google Scholar
  46. 46.
    N. Wang, C. Li, Z. Du, F. Wang, Calphad 31, 413 (2007)CrossRefGoogle Scholar
  47. 47.
    M. Rösner-Kuhn, J. Qin, K. Schaefers, U. Thiedemann, M.G. Frohberg, Int. J. Thermophys. 17, 959 (1996)ADSCrossRefGoogle Scholar
  48. 48.
    L. Arpshofen, R. Lück, B. Predel, J.F. Smith, J. Phase Equilib. 12, 141 (1991)CrossRefGoogle Scholar
  49. 49.
    A.A. Turchaninin, I.A. Tomilin, M.A. Turchaninin, I.V. Belokonenko, P.G. Agrawal, Russ. J. Phys. Chem. A 73, 1717 (1999)Google Scholar
  50. 50.
    O.J. Sidorov, J.O. Esin, P.V. Gel’d, Melts Moscow 2, 181 (1989)Google Scholar
  51. 51.
    D. Turnbull, Contemp. Phys. 10, 473 (1969)ADSCrossRefGoogle Scholar
  52. 52.
    D.R. Uhlmann, J. Non-Cryst. Solids 7, 337 (1972)ADSCrossRefGoogle Scholar
  53. 53.
    J.W.P. Schmelzer, A.S. Abyzov, V.M. Fokin, C. Schick, E.D. Zanotto, J. Non-Cryst. Solids 429, 24 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    Ch. Tang, P. Harrowell, Nature Materials 12, 507 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    X.Q. Yan, Y.J. Lü, J. Chem. Phys. 143, 164503 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  • T. Kulikova
    • 1
  • A. Maiorova
    • 1
  • V. Bykov
    • 1
    • 2
  • K. Shunyaev
    • 1
    • 2
  1. 1.Institute of Metallurgy, Ural Branch of Russian Academy of SciencesEkaterinburgRussia
  2. 2.Ural Federal University named after the first President of Russia B.N. YeltsinEkaterinburgRussia

Personalised recommendations