The European Physical Journal Special Topics

, Volume 226, Issue 6, pp 1207–1218

Nonlinear evolution of the interface between immiscible fluids in a micro channel subjected to an electric field

Regular Article
Part of the following topical collections:
  1. IMA8 - Interfacial Fluid Dynamics and Processes

Abstract

The long wave analysis of the interface between two leaky dielectric fluids flowing in a micro channel subjected to an electric field is performed. The electric field is applied normal to the flat interface. The evolution equations for the interface position and the surface charge density are derived. The results show that the base flow prevents the interface from reaching the channel walls for the values of the parameters considered. When the strength of the base flow is diminished, it is possible to asymptotically approach the stationary base flat interface solution. At early times of instability, interface deflections for different strengths of base flow share a common shape as suggested by the linear theory, which states that the base pressure-driven flow does not affect the linear stability point. The base flow breaks the symmetry of the interface profile yielding an asymmetric pattern at steady-state. It is also found that, the amplitude of the interface deflections is decreased and the symmetry is lost when the depth ratio changes in such a way that the maximum speed at the base flow does not occur at the flat interface between the two fluids.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.Y. Chou, L. Zhuang, L. Guo, Appl. Phys. Lett. 75, 1004 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Nature 403, 874 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Europhys. Lett. 53, 518 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    M.D. Morariu, N.E. Voicu, E. Schäffer, Z. Lin, T.P. Russell, U. Steiner, Nat. Mater. 2, 48 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    S.A. Roberts, S. Kumar, Phys. Fluids 22, 122102 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    N.T. Eldabe, J. Math. Phys. 28, 2791 (1987)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Wu, S.Y. Chou, J. Non-Newton. Fluid Mech. 125, 91 (2005)CrossRefGoogle Scholar
  8. 8.
    G. Tomar, V. Shankar, A. Sharma, G. Biswas, J. Non-Newton. Fluid Mech. 143, 120 (2007)CrossRefGoogle Scholar
  9. 9.
    G. Ersoy, A.K. Uguz, Fluid Dyn. Res. 44, 031406 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    A. Nurocak, A.K. Uguz, Eur. Phys. J. Special Topics 219, 99 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    R.M. Thaokar, V. Kumaran, Phys. Fluids 17, 084104 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    A.O. El Moctar, N. Aubry, J. Batton, Lab Chip 3, 273 (2003)CrossRefGoogle Scholar
  13. 13.
    H. Lin, B.D. Storey, M.H. Oddy, C.H. Chen, J.G. Santiago, Phys. Fluids 16, 1922 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    I. Glasgow, J. Batton, N. Aubry, Lab Chip 4, 558 (2004)CrossRefGoogle Scholar
  15. 15.
    C. Chang, R. Yang, Microfluid Nanofluid 3, 501 (2007)CrossRefGoogle Scholar
  16. 16.
    O. Ozen, N. Aubry, D.T. Papageorgiou, P.G. Petropoulos, Phys. Rev. Lett. 96, 144501 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    J.F. Hoburg, J.R. Melcher, J. Fluid Mech. 73, 333 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    J.R. Melcher, W.J. Schwarz, Phys. Fluids 11, 2604 (1968)ADSCrossRefGoogle Scholar
  19. 19.
    B.S. Tilley, P.G. Petropoulos, D.T. Papageorgiou, Phys. Fluids 13, 3547 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    R.V. Craster, O.K. Matar, Phys. Fluids 17, 032104 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    J.D. Zahn, V. Reddy, Microfluid Nanofluid 2, 399 (2006)CrossRefGoogle Scholar
  22. 22.
    O. Ozen, N. Aubry, D. Papageorgiou, P. Petropoulos, Electrochim. Acta 51, 5316 (2006)CrossRefGoogle Scholar
  23. 23.
    A.K. Uguz, O. Ozen, N. Aubry, Phys. Fluids 20, 031702 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    A.K. Uguz, N. Aubry, Phys. Fluids 20, 092103 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    C.T. Okonski, H.C. Thacher, J. Phys. Chem-US 57, 955 (1954)CrossRefGoogle Scholar
  26. 26.
    S. Allan, S.G. Mason, J. Chem. Phys. 45, 267 (1962)Google Scholar
  27. 27.
    G.I. Taylor, Proc. R. Soc. London, Ser. 159, 299 (1966)Google Scholar
  28. 28.
    J.R. Melcher, G.I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969)ADSCrossRefGoogle Scholar
  29. 29.
    F. Li, O. Ozen, N. Aubry, D.T. Papageorgiou, P.G. Petropoulos, J. Fluid Mech. 583, 347 (2007)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Li, T.N. Wong, N. Nguyen, Int. J. Heat Mass Trans. 55, 6994 (2012)CrossRefGoogle Scholar
  31. 31.
    J.R. Melcher, C.V. Smith Jr, Phys. Fluids 12, 778 (1969)ADSCrossRefGoogle Scholar
  32. 32.
    K. Abdella, H. Rasmussen, J. Comput. Appl. Math. 78, 33 (1997)MathSciNetCrossRefGoogle Scholar
  33. 33.
    P. Gambhire, R.M. Thaokar, Phys. Fluids 22, 064103 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    V. Shankar, A. Sharma, J. Colloid Interf. Sci. 274, 294 (2004)CrossRefGoogle Scholar
  35. 35.
    D. Papageorgiou, P. Petropoulos, J. Eng. Math. 50, 22 (2004)CrossRefGoogle Scholar
  36. 36.
    A. Castellanos, A. Gonzalez, IEEE Trans. Dielectr. Electr. Insul. 5, 334 (1998)CrossRefGoogle Scholar
  37. 37.
    D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1969)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    L.E. Johns, R. Narayanan, Interfacial Instability (Springer-Verlag, New York, 2002)Google Scholar
  39. 39.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    S.G. Yiantsios, B.G. Higgins, Phys. Fluids 31, 3225 (1988)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    L.N. Trefethen, Spectral Methods in MATLAB (SIAM, Philadelphia, 2000)Google Scholar
  42. 42.
    P. Eribol, A.K. Uguz, Eur. Phys. J. Special Topics, 224, 423 (2016)Google Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Bogazici University, Department of Chemical EngineeringIstanbulTurkey

Personalised recommendations