The European Physical Journal Special Topics

, Volume 226, Issue 6, pp 1169–1176

Enhancement of heat transfer rate on phase change materials with thermocapillary flows

Regular Article
Part of the following topical collections:
  1. IMA8 - Interfacial Fluid Dynamics and Processes

Abstract

We carry out simulations of the melting process on the phase change material n-octadecane in squared geometries in the presence of natural convection and including thermocapillary effects. We show how the introduction of thermocapillary effects enhances the heat transfer rate, being the effect especially relevant for small Bond numbers. Thus induction of Marangoni flows results in a useful mechanism to enhance the typical slow heat transfer rate of paraffin waxes in applications of energy storage or passive control management.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Memon, Phase change materials integrated in building walls: A state of the art review, Renew. Sustain. Energy Rev. 31, 870 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Gui, D. Tang, S. Liang, B. Lin, X. Yuan, Influence of void ratio on thermal performance of heat pipe receiver, Int. J. Heat Fluid Flow 33, 109 (2012)CrossRefGoogle Scholar
  3. 3.
    T.Y. Kim, B.S. Hyun, J.J. Lee, J. Rhee, Numerical study of the spacecraft thermal control hardware combining solid-liquid phase change material and a heat pipe, Aerosp. Sci. Technol. 27, 10 (2013)CrossRefGoogle Scholar
  4. 4.
    D. Fernandes, F. Pitié, G. Cáceres, J. Baeyens, Thermal energy storage: How previous findings determine current research priorities, Energy 39, 246 (2012)CrossRefGoogle Scholar
  5. 5.
    C.J. Ho, J.Y. Gao, Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material, Int. Commun. Heat Mass Transf. 36, 467 (2009)CrossRefGoogle Scholar
  6. 6.
    E.M. Alawadhi, Thermal analysis of a building brick containing phase change material, Energy Build. 40, 351 (2008)CrossRefGoogle Scholar
  7. 7.
    D.R. Lide, ed., CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, 2003)Google Scholar
  8. 8.
    N.S. Dhaidan, J.M. Khodadadi, T. Al-Hattab, S.M. Al-Mashat, Experimental and numerical investigation of melting of phase change material/nanoparticle suspensions in a square container subjected to a constant heat flux, Int. J. Heat Mass Transf. 66, 672 (2013)CrossRefGoogle Scholar
  9. 9.
    B. Gebhart Effects of viscous dissipation in natural convection, J. Fluid Mech. 14, 225 (1962)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    S.S. Sebti, M. Mastiani, H. Mirzaei, A. Dadvand, S. Kashani, S.A. Hosseini, Numerical study of the melting of nano-enhanced phase change material in a square cavity, J. Zhejiang Univ. Sci. A 14, 307 (2013)CrossRefGoogle Scholar
  11. 11.
    C. Beckermann, R. Viskanta, Natural convection solid/liquid phase change in porous media, Int. J. Heat Mass Transf. 31, 35 (1988)CrossRefGoogle Scholar
  12. 12.
    T.L. Bergman, J.R. Keller. Combined buoyancy, surface tension flow in liquid metals. Numerical Heat Transfer 13, 49 (1988)Google Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Department of Applied Mathematics to the Aerospace EngineeringSchool of Aerospace Engineering, Universidad Politécnica de Madrid (UPM), Plaza Cardenal Cisneros 3MadridSpain
  2. 2.Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, C/ Nicolás Cabrera 15, Campus Cantoblanco UAMMadridSpain

Personalised recommendations