The European Physical Journal Special Topics

, Volume 226, Issue 6, pp 1155–1168 | Cite as

Specific interface area and self-stirring in a two-liquid system experiencing intense interfacial boiling below the bulk boiling temperatures of both components

Regular Article
Part of the following topical collections:
  1. IMA8 - Interfacial Fluid Dynamics and Processes

Abstract

We present an approach to theoretical assessment of the mean specific interface area (δSV) for a well-stirred system of two immiscible liquids experiencing interfacial boiling. The assessment is based on the balance of transformations of mechanical energy and the laws of the momentum and heat transfer in the turbulent boundary layer. The theory yields relations between the specific interface area and the characteristics of the system state. In particular, this allows us to derive the equations of self-cooling dynamics of the system in the absence of external heat supply. The results provide possibility for constructing a self-contained mathematical description of the process of interfacial boiling. In this study, we assume the volume fractions of two components to be similar as well as the values of their kinematic viscosity and molecular heat diffusivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Krell, Handbook of Laboratory Distillation, 2nd edn. (Elsevier, 1982), Chap. 4.3Google Scholar
  2. 2.
    C.J. Geankoplis, Transport Processes and Separation Process Principles, 4th edn. (Prentice Hall, 2003)Google Scholar
  3. 3.
    H.C. Simpson, G.C. Beggs, M. Nazir, Evaporation of butane drops in brine, Desalination 15, 11 (1974)CrossRefGoogle Scholar
  4. 4.
    G.P. Celata, M. Cumo, F. D’Annibale, F. Gugliermetti, G. Ingui’, Direct contact evaporation of nearly saturated R 114 in water, Int. J. Heat Mass Transfer 38, 1495 (1995)CrossRefGoogle Scholar
  5. 5.
    M.L. Roesle, F.A. Kulacki, An experimental study of boiling in dilute emulsions, part A: heat transfer, Int. J. Heat Mass Transfer 55, 2160 (2012)CrossRefGoogle Scholar
  6. 6.
    M.L. Roesle, F.A. Kulacki, An experimental study of boiling in dilute emulsions, part B: visualization, Int. J. Heat Mass Transfer 55, 2166 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Sideman, J. Isenberg, Direct contact heat transfer with change of phase: Bubble growth in three-phase systems, Desalination 2, 207 (1967)CrossRefGoogle Scholar
  8. 8.
    A.A. Kendoush, Theory of convective drop evaporation in direct contact with an immiscible liquid, Desalination 169, 33 (2004)CrossRefGoogle Scholar
  9. 9.
    G. Filipczak, L. Troniewski, S. Witczak, in Evaporation, Condensation and Heat transfer, edited by A. Ahsan (InTech, 2011)Google Scholar
  10. 10.
    K.F. Gordon, T. Singh, E.Y. Weissman, Boiling heat transfer between immiscible liquids, Int. J. Heat and Mass Transfer 3, 90 (1961)CrossRefGoogle Scholar
  11. 11.
    C.B. Prakash, K.L. Pinder, Direct contact heat transfer between two immiscible liquids during vaporisation, Can. J. Chem. Engineering 45, 210 (1967)CrossRefGoogle Scholar
  12. 12.
    C.B. Prakash, K.L. Pinder, Direct contact heat transfer between two immiscible liquids during vaporization: Part II: Total evaporation time, Can. J. Chem. Engineering 45, 215 (1967)CrossRefGoogle Scholar
  13. 13.
    A.V. Pimenova, D.S. Goldobin, Boiling at the boundary of two immiscible liquids below the bulk boiling temperature of each component, JETP 119, 91 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Pimenova, D.S. Goldobin, Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components, Eur. Phys. J. E 37, 108 (2014)CrossRefGoogle Scholar
  15. 15.
    A.V. Pimenova, D.S. Goldobin, Gravitational instability of thin gas layer between two thick liquid layers, Journal of Applied Mechanics and Technical Physics 57, 32 (2016)CrossRefGoogle Scholar
  16. 16.
    Th. von Karman, Mechanische ähnlichkeit und turbulenz, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Fachgruppe 1 (Mathematik) 5, 58 (1930). [English translation: Th. von Karman, Mechanical similitude and turbulence, Tech. Mem. NACA, no. 611 (1931)]MATHGoogle Scholar
  17. 17.
    L. Prandtl, Neuere ergebnisse der turbulenzforschung, Z. Ver. dtsch. Ing. 77, 105 (1933). [English translation: L. Prandtl, Recent results of turbulence research, Tech. Mem. NACA, no. 720 (1933)]MATHGoogle Scholar
  18. 18.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986)Google Scholar
  19. 19.
    H. Schlichting, K. Gersten, Boundary-Layer Theory (Springer, 2000)Google Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Institute of Continuous Media Mechanics, UB RASPerm 614013Russia
  2. 2.Department of Theoretical PhysicsPerm State UniversityPerm 614990Russia

Personalised recommendations