The European Physical Journal Special Topics

, Volume 226, Issue 3, pp 427–431 | Cite as

Efficiency at maximum power for an isothermal chemical engine with particle exchange at varying chemical potential

  • Jesper Koning
  • Kenichiro Koga
  • Joseph. O. Indekeu
Regular Article
  • 38 Downloads
Part of the following topical collections:
  1. Nonlinearity, Nonequilibrium and Complexity: Questions and Perspectives in Statistical Physics

Abstract

We calculate the efficiency at maximum power (EMP) of an isothermal chemical cycle in which particle uptake occurs at a fixed chemical potential but particle release takes place at varying chemical potential. We obtain the EMP as a function of Δμ/kT, where Δμ is the difference between the highest and lowest reservoir chemical potentials and T is the absolute temperature. In the linear response limit, Δμ ≪ kT, the EMP tends to the expected universal value 1/2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Cleuren, B. Rutten, C. Van den Broeck, Universality of efficiency at maximum power, Eur. Phys. J. Special Topics 224, 879 (2015) and other papers in the same Special Topics issueADSCrossRefGoogle Scholar
  2. 2.
    C. Van den Broeck, Thermodynamic efficiency at maximum power, Phys. Rev. Lett. 95, 190602 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    M. Esposito, K. Lindenberg, C. Van den Broeck, Universality of efficiency at maximum power, Phys. Rev. Lett. 102, 130602 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    C. Van den Broeck, Efficiency at maximum power in the low-dissipation limit, Europhys. Lett. 101, 10006 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    For a historical perspective, see M. Moreau, Y. Pomeau, Carnot principle and its generalizations: A very short story of a long journey, Eur. Phys. J. Special Topics 224, 769 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    For a historical perspective, see A. Calvo Hernandez, J.M.M. Roco, A. Medina, S. Velasco, L. Guzman-Vargas, The maximum power efficiency 1 − √_τ: Research, education, and bibliometric relevance, Eur. Phys. J. Special Topics 224, 809 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    C. Van den Broeck, N. Kumar, K. Lindenberg, Efficiency of Isothermal Molecular Machines at Maximum Power, Phys. Rev. Lett. 108, 210602 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    F. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Am. J. Phys. 43, 22 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    L. Chen, C. Sun, C. Wu, J. Yu, Performance characteristic of isothermal chemical engines, Energy Convers. Manage. 38, 1841 (1997)CrossRefGoogle Scholar
  10. 10.
    H. Hooyberghs, B. Cleuren, A. Salazar, J.O. Indekeu, C. Van den Broeck, Efficiency at maximum power of a chemical engine, J. Chem. Phys. 139, 134111 (2013) [See also the Publisher’s note, J. Chem. Phys. 140, 209901 (2014)]ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  • Jesper Koning
    • 1
  • Kenichiro Koga
    • 2
    • 3
  • Joseph. O. Indekeu
    • 1
  1. 1.Institute for Theoretical Physics, Celestijnenlaan 200D, KU LeuvenLeuvenBelgium
  2. 2.Department of ChemistryFaculty of Science, Okayama UniversityOkayama 700-8530Japan
  3. 3.Research Institute for Interdisciplinary Science, Okayama UniversityOkayama 700-8530Japan

Personalised recommendations