The European Physical Journal Special Topics

, Volume 226, Issue 3, pp 477–488 | Cite as

A multilayer approach for price dynamics in financial markets

  • Alessio Emanuele Biondo
  • Alessandro Pluchino
  • Andrea Rapisarda
Regular Article
Part of the following topical collections:
  1. Nonlinearity, Nonequilibrium and Complexity: Questions and Perspectives in Statistical Physics

Abstract

We introduce a new Self-Organized Criticality (SOC) model for simulating price evolution in an artificial financial market, based on a multilayer network of traders. The model also implements, in a quite realistic way with respect to previous studies, the order book dynamics, by considering two assets with variable fundamental prices. Fat tails in the probability distributions of normalized returns are observed, together with other features of real financial markets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.B. Mandelbrot, R.L. Hudson, The (Mis) Behavior of Markets (Basic Books, 2004)Google Scholar
  2. 2.
    R.N. Mantegna, H.E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, 1999)Google Scholar
  3. 3.
    J.-P. Bouchaud, M. Potters Theory of Financial Risk and Derivative Pricing (Cambridge University Press, 2004)Google Scholar
  4. 4.
    J.D. Farmer, D. Foley, Nature 460, 685 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems (Princeton University Press, 2004)Google Scholar
  6. 6.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, 2009)Google Scholar
  7. 7.
    A.E. Biondo, A. Pluchino, A. Rapisarda, J. Stat. Phys. 151, 607 (2013)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A.E. Biondo, A. Pluchino, A. Rapisarda, D. Helbing, Phys. Rev. E 88, 062814 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A.E. Biondo, A. Pluchino, A. Rapisarda, D. Helbing, PloS one 8, e68344 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    A.E. Biondo, A. Pluchino, A. Rapisarda, Contemp. Phys. 55, 318 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    A.E. Biondo, A. Pluchino, A. Rapisarda, Phys. Rev. E 92, 042814 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A.E. Biondo, A. Pluchino, A. Rapisarda, Chaos, Solitons and Fractals 88, 196 (2016)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    F. Caruso, A. Pluchino, V. Latora, S. Vinciguerra, A. Rapisarda, Phys. Rev. E 75, 055101(R) (2007)ADSCrossRefGoogle Scholar
  14. 14.
    F. Caruso, V. Latora, A. Pluchino, A. Rapisarda, B. Tadic, Eur. Phys. J. B 50, 243 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    S. Boccaletti et al., Phys. Rep. 544, 1 (2014)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Watts, S. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Department of Economics and BusinessUniversity of CataniaCataniaItaly
  2. 2.Department of Physics and AstronomyUniversity of Catania and INFN Sezione di CataniaCataniaItaly

Personalised recommendations