The European Physical Journal Special Topics

, Volume 226, Issue 6, pp 1239–1251

Different types of Lagrangian coherent structures formed by solid particles in three-dimensional time-periodic flows

Regular Article
Part of the following topical collections:
  1. IMA8 - Interfacial Fluid Dynamics and Processes

Abstract

Modeling of the experments on formation of coherent structures (also called particle accumulation structures, or PAS) in a three-dimensional time-periodic flow in a finite-size liquid column driven by a combined effect of thermocapillary stress and buoyancy was performed. The exact experimental conditions were studied. We considered particles 1% denser than the fluid. Aiming at reproducing the observed variety of PAS, double-loop (SL-II) and asymmetric single-loop (ASL-I) structures were obtained along with a “conventional” symmetric single-loop PAS (SL-I). The observations are perfectly in line with the experiments. It is shown that the limit trajectory of a particle is not only a matter of the particle’s inertia but also of its initial location. We developed a method to calculate the formation time of a structure. The obtained values are very close to those experimentally measured.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.L. Brown, A. Roshko, J. Fluid Mech. 64, 775 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    K.D. Squires, J.K. Eaton, Phys. Fluids A 3, 1169 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    S.K. Robinson, Annu. Rev. Fluid Mech. 23, 601 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    D. Schwabe, P. Hintz, S. Frank, Microgravity Sci. Technol. 9, 163 (1996)Google Scholar
  5. 5.
    D. Pushkin, D.E. Melnikov, V.M. Shevtsova, Phys. Rev. Lett. 106, 234501 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    M. Lappa, Chaos 23, 013105 (2013)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Lappa, Phys. Fluids 26, 093301 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    D. Schwabe, S. Frank, Adv. Space Res. 23, 1191 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    T. Sapsis, G. Haller, Chaos 20, 017515 (2010)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Schwabe, A.I. Mizev, M. Udhayasankar, S. Tanaka, Phys. Fluids 19, 072102 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    H.C. Kuhlmann, Thermocapillary Convection in Models of Crystal Growth (Springer Tracts in Modern Physics, Springer, Berlin, Heidelberg, 1999), Vol. 152 Google Scholar
  12. 12.
    M.K. Smith, S.H. Davis, J. Fluid Mech. 132, 119 (1983)ADSCrossRefGoogle Scholar
  13. 13.
    D.E. Melnikov, V.M. Shevtsova, Microgravity Sci. Technol. 21, 53 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    V.M. Shevtsova, D.E. Melnikov, A. Nepomnyashchy, Phys. Rev. Lett. 102, 134503 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S. Tanaka, H. Kawamura, I. Ueno, D. Schwabe, Phys. Fluids 18, 067103 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    D.E. Melnikov, D. Pushkin, V.M. Shevtsova, Eur. Phys. J. Special Topics 192, 29 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    E. Hofmann, H.C. Kuhlmann, Phys. Fluids 23, 072106 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    D.E. Melnikov, D.O. Pushkin, V. Shevtsova, Phys. Fluids 25, 092108 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    H.D. Kuhlmann, F.H. Muldoon, Eur. Phys. J. Special Topics 219, 59 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    H.C. Kuhlmann, M. Lappa, D. Melnikov, R. Mukin, F.H. Muldoon, D. Pushkin, V. Shevtsova, I. Ueno, Fluid Dyn. Mater. Proc. 10, 1 (2014)Google Scholar
  21. 21.
    M. Gotoda, D.E. Melnikov, I. Ueno, V. Shevtsova, Chaos 26, 073106 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    F.H. Muldoon, H.C. Kuhlmann, Physica D 253, 40 (2013)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    I. Ueno, Y. Abe, K. Noguchi, H. Kawamura, Adv. Space Res. 41, 2145 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    H.C. Kuhlmann, R.V. Mukin, T. Sano, I. Ueno, Fluid Dyn. Res. 46, 041421 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    M. Lappa, Geophys. Astrophys. Fluid Dyn. 110, 348 (2016)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Lappa, Phys. Fluids 25, 012101 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    H.C. Kuhlmann, F.H. Muldoon, Phys. Rev. E 85, 046310 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    M. Pinsky, A. Khain, J. Aerosol Sci. 28, 1177 (1997)CrossRefGoogle Scholar
  29. 29.
    G. Falkovich, A. Fouxon, M.G. Stepanov, Nature 419, 151 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    V.M. Shevtsova, M. Mojahed, D.E. Melnikov, J.C. Legros, in Interfacial Fluid Dynamics and Transport Processes, Vol. 628, Lecture Notes in Physics, edited by R. Narayanan, D. Schwabe (Springer, 2003), p. 241Google Scholar
  31. 31.
    D.E. Melnikov, V. Shevtsova, T. Yano, K. Nishino, Int. J. Heat and Mass Transfer 87, 119 (2015)CrossRefGoogle Scholar
  32. 32.
    V.M. Shevtsova, D.E. Melnikov, J.C. Legros, Phys. Fluids 13, 2851 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    V.M. Shevtsova, D.E. Melnikov, J.C. Legros, Phys. Rev. E 68, 066311 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    D.E. Melnikov, V.M. Shevtsova, J.C. Legros, Phys. Fluids 16, 1746 (2004)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Babiano, J.H.E. Cartwright, O. Piro, A. Provenzale, Phys. Rev. Lett. 84, 5764 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    M.R. Maxey, J.J. Riley, Phys. Fluids 26, 883 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    D.E. Melnikov, T. Watanabe, T. Matsugase, I. Ueno, V. Shevtsova, Microgravity Sci. Technol. 26, 365 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    D.E. Melnikov, V.M. Shevtsova, FDMP Fluid Dyn. Mater. Proc. 1, 189 (2005)Google Scholar
  39. 39.
    M. Gotoda, T. Sano, T. Kaneko, I. Ueno, Eur. Phys. J. Special Topics 224, 299 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    F.H. Muldoon, H.C. Kuhlmann, Phys. Fluids 28, 073305 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Université Libre de BruxellesBruxellesBelgium

Personalised recommendations