Non-equilibrium physics of Rydberg lattices in the presence of noise and dissipative processes

Abstract

We study the non-equilibrium dynamics of driven spin lattices in the presence of decoherence caused by either laser phase noise or strong decay. In the first case, we discriminate between correlated and uncorrelated noise and explore their effect on the mean density of Rydberg states and the full counting statistics (FCS). We find that while the mean density is almost identical in both cases, the FCS differ considerably. The main method employed is the Langevin equation (LE) but for the sake of efficiency in certain regimes, we use a Markovian master equation and Monte Carlo rate equations, respectively. In the second case, we consider dissipative systems with more general power-law interactions. We determine the phase diagram in the steady state and analyse its generation dynamics using Monte Carlo rate equations. In contrast to nearest-neighbour models, there is no transition to long-range-ordered phases for realistic interactions and resonant driving. Yet, for finite laser detunings, we show that Rydberg lattices can undergo a dissipative phase transition to a long-range-ordered antiferromagnetic (AF) phase. We identify the advantages of Monte Carlo rate equations over mean field (MF) predictions.

References

  1. 1.

    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    ADS  Article  Google Scholar 

  2. 2.

    L. Berthier, Jorge Kurchan, Nat. Phys. 9, 310 (2013)

    Article  Google Scholar 

  3. 3.

    J. Prost, F. Jülicher, J.-F. Joanny, Nat. Phys. 11, 111 (2015)

    Article  Google Scholar 

  4. 4.

    G. Ritschel, J. Roden, W.T. Strunz, A. Eisfeld. New J. Phys. 13, 113034 (2011)

    ADS  Article  Google Scholar 

  5. 5.

    H. van Amerongen, L. Valkunas, R. van Grondelle, Photosynthetic Excitons (World Scientific, Singapore, 2000)

  6. 6.

    D.R. Barbero, U. Steiner, Phys. Rev. Lett. 102, 248303 (2009)

    ADS  Article  Google Scholar 

  7. 7.

    S. Diehl, E. Rico, M.A. Baranov, P. Zoller, Nat. Phys. 7, 971 (2011)

    Article  Google Scholar 

  8. 8.

    M. Müller, et al., Adv. At. Mol. Opt. Phys. 61, 1 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    T.E. Lee, S. Gopalakrishnan, M.D. Lukin, Phys. Rev. Lett. 110, 257204 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    T. Ramos, et al., Phys. Rev. Lett. 113, 237203 (2014)

    ADS  Article  Google Scholar 

  11. 11.

    J.J. Mendoza-Arenas, et al., Phys. Rev. A 93, 023821 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    J. Eisert, et al., Nat. Phys. 11, 124 (2015)

    Article  Google Scholar 

  13. 13.

    T. Byrnes, et al., Nat. Phys. 10, 803 (2014)

    MathSciNet  Article  Google Scholar 

  14. 14.

    R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)

    Article  Google Scholar 

  15. 15.

    G. Rempe, et al., Phys. Rev. Lett. 67, 1727 (1991)

    ADS  Article  Google Scholar 

  16. 16.

    M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    T. Lahaye, et al., Rep. Prog. Phys. 72, 126401 (2009)

    ADS  Article  Google Scholar 

  18. 18.

    I. Lesanovsky, J.P. Garrahan, Phys. Rev. Lett. 111, 215305 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    I. Lesanovsky, J.P. Garrahan, Phys. Rev. A (R) 90, 011603 (2014)

    ADS  Article  Google Scholar 

  20. 20.

    M. Marcuzzi, et al., Phys. Rev. Lett. 113, 210401 (2014)

    ADS  Article  Google Scholar 

  21. 21.

    R. Gutiérrez, et al., Phys. Rev. E 92, 062144 (2015)

    ADS  Article  Google Scholar 

  22. 22.

    M. Marcuzzi, et al., J. Phys. A 47, 48 (2014)

    MathSciNet  Article  Google Scholar 

  23. 23.

    H. Schemp, et al., Phys. Rev. Lett. 112, 013002 (2014)

    ADS  Article  Google Scholar 

  24. 24.

    N. Malossi, et al., Phys. Rev. Lett. 113, 023006 (2014)

    ADS  Article  Google Scholar 

  25. 25.

    A. Urvoy, et al., Phys. Rev. Lett. 114, 203002 (2015)

    ADS  Article  Google Scholar 

  26. 26.

    M. M. Valado, et al., Phys. Rev. A (R) 93, 040701 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    T.E. Lee, H. Häffner, M.C. Cross, Phys. Rev. A 84, 031402 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    M. Höning, et al., Phys. Rev. A 87, 023401 (2013)

    ADS  Article  Google Scholar 

  29. 29.

    J. Qian, et al., Phys. Rev. A 92, 063407 (2015)

    ADS  Article  Google Scholar 

  30. 30.

    J. Qian, G. Dong, L. Zhou, W. Zhang, Phys. Rev. A 85, 065401 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    H. Weimer, Phys. Rev. Lett 114, 040402 (2015)

    ADS  Article  Google Scholar 

  32. 32.

    V.R. Overbeck, H. Weimer, Phys. Rev. A 93, 012106 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    M.F. Maghrebi, A.V. Gorshkov, Phys. Rev. B 93, 014307 (2016)

    ADS  Article  Google Scholar 

  34. 34.

    M. Höning, et al., Phys. Rev. A (R) 90, 021603 (2014)

    Article  Google Scholar 

  35. 35.

    N. Lang, H.P. Büchler, Phys. Rev. A 92, 012128 (2015)

    ADS  Article  Google Scholar 

  36. 36.

    B. Vermesch, et al., New J. Phys. 17, 013008 (2015)

    ADS  Article  Google Scholar 

  37. 37.

    C.K. Chan, et al., Phys. Rev. A (R) 91, 051601 (2015)

    ADS  Article  Google Scholar 

  38. 38.

    C. Ates, et al., Phys. Rev. A 85, 043620 (2012)

    ADS  Article  Google Scholar 

  39. 39.

    A. Hu, T.E. Lee, C.W. Clark, Phys. Rev. A 88, 053627 (2013)

    ADS  Article  Google Scholar 

  40. 40.

    J.V. Hernández, F. Robicheaux. J. Phys. B. 41, 4 (2008)

    Google Scholar 

  41. 41.

    D. Schönleber, et al., Phys. Rev. A 89, 033421 (2014)

    ADS  Article  Google Scholar 

  42. 42.

    J. Honer, et al., Phys. Rev. Lett. 107, 093601 (2011)

    ADS  Article  Google Scholar 

  43. 43.

    J.V. Hernández, F. Robicheaux, J. Phys. B 41, 195301 (2008)

    ADS  Article  Google Scholar 

  44. 44.

    Z. Kurucz, J.H. Wesenberg, K. Mølmer, Phys. Rev. A 83, 053852 (2011)

    ADS  Article  Google Scholar 

  45. 45.

    H. Weimer, R. Löw, T. Pfau, H.P. Büchler, Phys. Rev. Lett. 101, 250601 (2008)

    ADS  Article  Google Scholar 

  46. 46.

    S. Ji, C. Ates, I. Lesanovsky, Phys. Rev. Lett. 107, 060406 (2011)

    ADS  Article  Google Scholar 

  47. 47.

    P. Avan, C. Cohen-Tannoudji. J. Phys. B: At. Mol. Phys. 10, 2 (1977)

    Google Scholar 

  48. 48.

    M. Sargent III, M.O. Scully, W.E. Lamb, Jr., in Laser Physics (Addison Wesley, 1974), p. 311

  49. 49.

    C. Ates, T. Pohl, T. Pattard, J.M. Rost, Phys. Rev. Lett. 98, 023002 (2007)

    ADS  Article  Google Scholar 

  50. 50.

    C. Ates, T. Pohl, T. Pattard, J.M. Rost, Phys. Rev. A 76, 013413 (2007)

    ADS  Article  Google Scholar 

  51. 51.

    C. Ates, T. Pohl, T. Pattard, J.M. Rost, J. Phys. B 39, L233 (2006)

    ADS  Article  Google Scholar 

  52. 52.

    B. Olmos, et al., Phys. Rev. E 90, 042147 (2014)

    ADS  Article  Google Scholar 

  53. 53.

    M. Mattioli, et al., New J. Phys. 17, 113039 (2015)

    ADS  Article  Google Scholar 

  54. 54.

    I. Lesanovsky, Phys. Rev. Lett. 106, 025301 (2011)

    ADS  Article  Google Scholar 

  55. 55.

    A.M. Fox, Quantum Optics: An Introduction (Oxford University Press, 2006)

  56. 56.

    R.H. Dicke, Phys. Rev. 93, 99 (1954)

    ADS  Article  Google Scholar 

  57. 57.

    C. Ates, S. Sevincli, T. Pohl, Phys. Rev. A 83, 041802 (2011)

    ADS  Article  Google Scholar 

  58. 58.

    K.P. Heeg, M. Gärttner, J. Evers, Phys. Rev. A 86, 063421 (2012)

    ADS  Article  Google Scholar 

  59. 59.

    P. Pearce, K. Seaton, J. Stat. Phys. 53, 1061 (1988)

    ADS  MathSciNet  Article  Google Scholar 

  60. 60.

    H. Labuhn, et al., Nature 534, 667 (2016)

    ADS  Article  Google Scholar 

  61. 61.

    H. Schempp, et al., Phys. Rev. Lett. 104, 173602 (2010)

    ADS  Article  Google Scholar 

  62. 62.

    H. Schempp, et al., Phys. Rev. Lett. 112, 013002 (2014)

    ADS  Article  Google Scholar 

  63. 63.

    A. Schwarzkopf, et al., Phys. Rev. Lett. 107, 103001 (2011)

    ADS  Article  Google Scholar 

  64. 64.

    A. Schwarzkopf, et al., Phys. Rev. A (R) 88, 061406 (2013)

    ADS  Article  Google Scholar 

  65. 65.

    J. Nipper, et al., Phys. Rev. X 2, 031011 (2012)

    Google Scholar 

  66. 66.

    M. Viteau, et al., Phys. Rev. Lett. 109, 053002 (2012)

    ADS  Article  Google Scholar 

  67. 67.

    J.D. Pritchard, et al., Phys. Rev. Lett. 105, 193603 (2010)

    ADS  Article  Google Scholar 

  68. 68.

    Y.O. Dudin, A. Kuzmich, Science 336, 887 (2012)

    ADS  Article  Google Scholar 

  69. 69.

    T. Peyronel, et al., Nature 488, 57 (2012)

    ADS  Article  Google Scholar 

  70. 70.

    D. Maxwell, et al., Phys. Rev. Lett. 110, 103001 (2013)

    ADS  Article  Google Scholar 

  71. 71.

    B.J. DeSalvo, et al., Phys. Rev. A 93, 022709 (2016)

    ADS  Article  Google Scholar 

  72. 72.

    S.E. Anderson, K.C. Younge, G. Raithel, Phys. Rev. Lett. 107, 263001 (2011)

    ADS  Article  Google Scholar 

  73. 73.

    P. Schauss, et al., Nature 491, 87 (2012)

    ADS  Article  Google Scholar 

  74. 74.

    T. Fukuhara, et al., Nature 502, 76 (2013)

    ADS  Article  Google Scholar 

  75. 75.

    L. Béguin, et al., Phys. Rev. Lett. 110, 263201 (2013)

    ADS  Article  Google Scholar 

  76. 76.

    D. Barredo, et al., Phys. Rev. Lett. 112, 183002 (2014)

    ADS  Article  Google Scholar 

  77. 77.

    F. Nogrette, et al., Phys. Rev. X. 4, 021034 (2014)

    Google Scholar 

  78. 78.

    R.C. Teixeira, et al., Phys. Rev. Lett. 115, 013001 (2015)

    ADS  Article  Google Scholar 

  79. 79.

    D. Porras, J.I. Cirac, Phys. Rev. Lett. 92, 207901 (2004)

    ADS  Article  Google Scholar 

  80. 80.

    J.W. Britton, et al., Nature 484, 489 (2012)

    ADS  Article  Google Scholar 

  81. 81.

    R. Islam, et al., Science 340, 583 (2013)

    ADS  Article  Google Scholar 

  82. 82.

    P. Richerme, et al., Nature 511, 198 (2014)

    ADS  Article  Google Scholar 

  83. 83.

    P. Jurcevic, et al., Nature 511, 202 (2014)

    ADS  Article  Google Scholar 

  84. 84.

    M. Foss-Feig, et al., Phys. Rev. A 87, 042101 (2013)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wildan Abdussalam.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdussalam, W., Gil, L.I. Non-equilibrium physics of Rydberg lattices in the presence of noise and dissipative processes. Eur. Phys. J. Spec. Top. 225, 3019–3036 (2016). https://doi.org/10.1140/epjst/e2016-60179-6

Download citation