Skip to main content
Log in

Fairy circles and their non-local stochastic instability

The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study analytically a non local stochastic partial differential equation describing a fundamental mechanism for patterns formation, as the one responsible for the so called fairy circles appearing in two different bio-physical scenarios; one on the African continent and another in Australia. Using a stochastic multiscale perturbation expansion, and a minimum coupling approximation we are able to describe the life-times associated to the stochastic evolution from an unstable uniform state to a patterned one. In this way we discuss how two different biological mechanisms can be collapsed in one analytical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S. Getzin, et al., Discovery of fairy circles in Australia supports self-organization theory, Proc. Natl. Acad. Sci. 113, 3551 (2016)

    Article  ADS  Google Scholar 

  2. N. Juergens, The biological underpinnings of Namib Desert fairy circles, Science 339, 1618 (2013)

    Article  ADS  Google Scholar 

  3. W.R. Tschinkel, The life cycle and life span of Namibian fairy circles, PloS one 7, e38056 (2012)

    Article  ADS  Google Scholar 

  4. F. Carteni, A. Marasco, G. Bonanomi, S. Mazzoleni, M. Rietkerk, F. Giannino, Negative plant soil feedback explaining ring formation in clonal plants, J. Theor. Biol. 313, 153 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. M.D. Cramer, N.N. Barger, Are Namibian fairy circles the consequence of self-organizing spatial vegetation patterning? PloS one 8, e70876 (2013)

    Article  ADS  Google Scholar 

  6. A.M. Turing, The chemical basis of morphogenesis, Philos. T. Roy. Soc. B 237, 37 (1952)

    Article  MathSciNet  Google Scholar 

  7. V. Deblauwe, N. Barbier, P. Couteron, O. Lejeune, J. Bogaert, The global bio-geography of semi-arid periodic vegetation patterns, Glob. Ecol. Biogeogr. 17, 715 (2008)

    Article  Google Scholar 

  8. J. von Hardenberg, E. Meron, M. Shachak, Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett. 87, 198101 (2001)

    Article  ADS  Google Scholar 

  9. M. Rietkerk, J. van de Koppel, Regular pattern formation in real ecosystems, Trends. Ecol. Evol. 23, 169 (2008)

    Article  Google Scholar 

  10. M.A. Fuentes, M.N. Kuperman, V.M. Kenkre, Nonlocal interaction effects on pattern formation in population dynamics, Phys. Rev. Lett. 91, 158104 (2003)

    Article  ADS  Google Scholar 

  11. M.O. Cáceres, Elementos de Estadistica de no Equilibrio y sus Aplicaciones al Transporte en Medios Desordenados (Reverte, Barcelona, 2003)

  12. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)

  13. V. Volterra, Theory of Functional and Integro Differential Equations (Dover, N.Y., 2005)

  14. M.O. Cáceres, Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics, J. Stat. Phys. 156, 94 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M.A. Fuentes, M.N. Kuperman, V.M. Kenkre, Analytical considerations in the study of spatial patterns arising from nonlocal interaction effects, J. Phys. Chem. B 108, 10505 (2004)

    Article  Google Scholar 

  16. J.D. Murray, Mathematical Biology I: An Introduction, Vol. 17 of Interdisciplinary Applied Mathematics (Springer, New York, 2002)

  17. M.O. Cáceres, M.A. Fuentes, First-passage time for pattern formation nonlocal partial differential equations, Phys. Rev. E 92, 042122 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. E.J. Gumbel, Les valeurs extrêmes des distributions statistiques, Annales de l’institut Henri Poincaré 5, 115 (1935)

    MathSciNet  MATH  Google Scholar 

  19. P. Colet, F. de Pasquale, M.O. Cáceres, M. San Miguel, Theory for relaxation at a subcritical pitchfork bifurcation, Phys. Rev. A 41, 1901 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Fuentes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentes, M.A., Cáceres, M.O. Fairy circles and their non-local stochastic instability. Eur. Phys. J. Spec. Top. 226, 443–453 (2017). https://doi.org/10.1140/epjst/e2016-60178-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60178-1

Navigation