Abstract
We study analytically a non local stochastic partial differential equation describing a fundamental mechanism for patterns formation, as the one responsible for the so called fairy circles appearing in two different bio-physical scenarios; one on the African continent and another in Australia. Using a stochastic multiscale perturbation expansion, and a minimum coupling approximation we are able to describe the life-times associated to the stochastic evolution from an unstable uniform state to a patterned one. In this way we discuss how two different biological mechanisms can be collapsed in one analytical framework.
References
S. Getzin, et al., Discovery of fairy circles in Australia supports self-organization theory, Proc. Natl. Acad. Sci. 113, 3551 (2016)
N. Juergens, The biological underpinnings of Namib Desert fairy circles, Science 339, 1618 (2013)
W.R. Tschinkel, The life cycle and life span of Namibian fairy circles, PloS one 7, e38056 (2012)
F. Carteni, A. Marasco, G. Bonanomi, S. Mazzoleni, M. Rietkerk, F. Giannino, Negative plant soil feedback explaining ring formation in clonal plants, J. Theor. Biol. 313, 153 (2012)
M.D. Cramer, N.N. Barger, Are Namibian fairy circles the consequence of self-organizing spatial vegetation patterning? PloS one 8, e70876 (2013)
A.M. Turing, The chemical basis of morphogenesis, Philos. T. Roy. Soc. B 237, 37 (1952)
V. Deblauwe, N. Barbier, P. Couteron, O. Lejeune, J. Bogaert, The global bio-geography of semi-arid periodic vegetation patterns, Glob. Ecol. Biogeogr. 17, 715 (2008)
J. von Hardenberg, E. Meron, M. Shachak, Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett. 87, 198101 (2001)
M. Rietkerk, J. van de Koppel, Regular pattern formation in real ecosystems, Trends. Ecol. Evol. 23, 169 (2008)
M.A. Fuentes, M.N. Kuperman, V.M. Kenkre, Nonlocal interaction effects on pattern formation in population dynamics, Phys. Rev. Lett. 91, 158104 (2003)
M.O. Cáceres, Elementos de Estadistica de no Equilibrio y sus Aplicaciones al Transporte en Medios Desordenados (Reverte, Barcelona, 2003)
N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)
V. Volterra, Theory of Functional and Integro Differential Equations (Dover, N.Y., 2005)
M.O. Cáceres, Passage Time Statistics in Exponential Distributed Time-Delay Models: Noisy Asymptotic Dynamics, J. Stat. Phys. 156, 94 (2014)
M.A. Fuentes, M.N. Kuperman, V.M. Kenkre, Analytical considerations in the study of spatial patterns arising from nonlocal interaction effects, J. Phys. Chem. B 108, 10505 (2004)
J.D. Murray, Mathematical Biology I: An Introduction, Vol. 17 of Interdisciplinary Applied Mathematics (Springer, New York, 2002)
M.O. Cáceres, M.A. Fuentes, First-passage time for pattern formation nonlocal partial differential equations, Phys. Rev. E 92, 042122 (2015)
E.J. Gumbel, Les valeurs extrêmes des distributions statistiques, Annales de l’institut Henri Poincaré 5, 115 (1935)
P. Colet, F. de Pasquale, M.O. Cáceres, M. San Miguel, Theory for relaxation at a subcritical pitchfork bifurcation, Phys. Rev. A 41, 1901 (1990)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fuentes, M.A., Cáceres, M.O. Fairy circles and their non-local stochastic instability. Eur. Phys. J. Spec. Top. 226, 443–453 (2017). https://doi.org/10.1140/epjst/e2016-60178-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjst/e2016-60178-1