The European Physical Journal Special Topics

, Volume 225, Issue 17–18, pp 3115–3119 | Cite as

Absence of economic and social constants

Regular Article
Part of the following topical collections:
  1. Discussion and Debate: Can Economics be a Physical Science?

Abstract

In this article, we discuss the possibility of economics as a discipline emulating the success of hard sciences. In our view, a fundamental obstacle arises from the fact that economics does not have (m)any stable and robust laws governing economic systems that hold true irrespective of the source of data. One possible but untested way to introduce some of the evolving features of large scale economic systems, e.g. out-of-equilibrium dynamics and finite rationality, is evolutionary game theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.H. Macgregor, Pareto Law, Econ. J. 46, 80 (1936)Google Scholar
  2. 2.
    M. Gallegati, S. Keen, T. Lux, P. Ormerod, Worrying trends in econophysics, Physica A 370, 1 (2006)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Buchanan, What has “econophysics” achieved?, http://physicsoffinance.blogspot.in/2013/05/what-haseconophysics-achieved.html
  4. 4.
    C. Schinkus, Econophysics and economics: sister disciplines?, Am. J. Phys. 78, 4 (2010)Google Scholar
  5. 5.
    S. Sinha, B.K. Chakarabarti, Econophysics: an emerging discipline, Econ. Political Weekly 47, 32 (2012)Google Scholar
  6. 6.
    P.W. Anderson, K. Arrow, D. Pines, The Economy as an Evolving Complex System (Santa Fe Institute Series, Westview Press (1988)Google Scholar
  7. 7.
    A. Kirman, Whom or what does the representative individual represent?, J. Econ. Perspect. 6, 117 (1992)CrossRefGoogle Scholar
  8. 8.
    D. Ariely, Predictably irrational (HarperCollins, 2008)Google Scholar
  9. 9.
    X. Gabaix, A sparsity-based model of bounded rationality, Quant. J. Econ. 129, 1661 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Sonnenschein, Market excess demand functions, Econometrica 40, 5490563 (1972)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    G. Debrue, Excess demand functions, J. Math. Econ. 1, 15 (1974)CrossRefGoogle Scholar
  12. 12.
    P. Samuelson, A Fallacy in the Interpretation of the Pareto's Law of Alleged Constancy of Income Distribution, Rivista Internazionale di Scienze Economiche e Commerciali 12, 246 (1965)Google Scholar
  13. 13.
    R. Lahkar, The dynamic instability of dispersed price equilibria, J. Econ. Theo. 146, 1796 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    D. Fudenberg, D. Levine, Theory of Learning in Games (MIT Press, Cambridge, Massachusetts, 1998)Google Scholar
  15. 15.
    M. Kandori, G.J. Mailath, R. Rob, Learning, mutation, and long run equilibria in Games, Econometrica, 61, 29 (1993)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    W.H. Sandholm, Population Games and Evolutionary Dynamics (MIT Press, Cambridge, MA, USA, 2010)Google Scholar
  17. 17.
    A.S. Chakrabarti, R. Lahkar, Large population aggregative potential games, forthcoming in Dynamic Games and ApplicationsGoogle Scholar
  18. 18.
    R. Lahkar, The dynamic instability of dispersed price equilibria, J. Econ. Theo. 146, 1796 (2011)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    A.S. Chakrabarti, R. Lahkar, An evolutionary model of endogenous fluctuations in technology and output, Working PaperGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Economics area, Indian Institute of ManagementAhmedabadIndia
  2. 2.School of Economics, Ashoka UniversityKundliIndia

Personalised recommendations