Advertisement

The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1423–1440 | Cite as

Studying PMMA films on silica surfaces with generic microscopic and mesoscale models

  • J. Zhang
  • D. Mukherji
  • K.Ch. Daoulas
Regular Article Methodological Aspects of Coarse Graining
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

Polymer films on solid substrates present significant interest for fundamental polymer physics and industrial applications. For their mesoscale study, we develop a hybrid particle-based representation where polymers are modeled as worm-like chains and non-bonded interactions are introduced through a simple density functional. The mesoscale description is parameterized to match a generic microscopic model, which nevertheless can represent real materials. Choosing poly (methyl methacrylate) adsorbed on silica as a case study, the consistency of both models in describing conformational and structural properties in polymer films is investigated. We compare selected quantifiers of chain-shape, the structure of the adsorbed layer, as well as the statistics of loops, tails, and trains. Overall, the models are found to be consistent with each other. Some deviations in conformations and structure of adsorbed layer can be attributed to the simplified description of polymer/surface interactions and local liquid packing in the mesoscale model. These results are encouraging for a future development of pseudo-dynamical schemes, parameterizing the kinetics in the hybrid model via the dynamics of the generic microscopic model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. de Gennes, Macromolecules 14, 1637 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979)Google Scholar
  3. 3.
    I.C. Sanchez (ed.), Physics of Polymer Surfaces and Interfaces (Butterworth-Heineman, 1992)Google Scholar
  4. 4.
    G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces (Chapman and Hall, London, 1993)Google Scholar
  5. 5.
    R.A.L. Jones, R.W. Richards, Polymers at Surfaces and Interfaces (Cambridge University Press, 1999)Google Scholar
  6. 6.
    E. Eisenriegler, Polymers Near Surfaces (World Scientific, Singapore, 1993)Google Scholar
  7. 7.
    M.M. Denn, Annu. Rev. Fluid Mech. 33, 265 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    C.N. Hoth, P. Schilinsky, S.A. Choulis, S. Balasubramanian, C.J. Brabec, Applications of Organic and Printed Electronics (Springer, 2013)Google Scholar
  9. 9.
    B. Weng, R.L. Shepherd, K. Crowley, A.J. Killard, G.G. Wallace, Analyst 135, 2779 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    B. Derby, Annu. Rev. Mater. Res. 40, 395 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 2013)Google Scholar
  12. 12.
    W.G. Noid, J. Chem. Phys. 139, 090901 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    M. Müller, J. Stat. Phys. 145, 967 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    J.T. Padding, W.J. Briels, J. Phys.: Condens. Matter 23, 233101 (2011)ADSGoogle Scholar
  15. 15.
    S.H.L. Klapp, D.J. Diestler, M.M. Schoen, J. Phys.: Condens. Matter 16, 7331 (2004)ADSGoogle Scholar
  16. 16.
    M. Guenza, J. Phys.: Condens. Matter 20, 033101 (2008)ADSGoogle Scholar
  17. 17.
    K. Kremer, Eur. Phys. J. B 64, 525 (2008)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Laradji, H. Guo, M.J. Zuckermann, Phys. Rev. E 49, 3199 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 115, 5015 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    S.Y. Trofimov, E.L.F. Nies, M.A.J. Michels, J. Chem. Phys. 117, 9383 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    K.C. Daoulas, M. Müller, J. Chem. Phys. 125, 184904 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    D.Q. Pike, F.A. Detcheverry, M. Müller, J.J. de Pablo, J. Chem. Phys. 131, 084903 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    T. Vettorel, G. Besold, K. Kremer, Soft Matter 6, 2282 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    G. Zhang, K.C. Daoulas, K. Kremer, Macromol. Chem. Phys. 214, 214 (2013)CrossRefGoogle Scholar
  25. 25.
    K.C. Daoulas, V. Rühle, K. Kremer, J. Phys.-Condens. Mat. 24, 284121 (2012)CrossRefGoogle Scholar
  26. 26.
    E. Helfand, A.M. Sapse, J. Chem. Phys. 62, 1327 (1975)ADSCrossRefGoogle Scholar
  27. 27.
    C.C. Hua, J.D. Schieber, J. Chem. Phys. 109, 10018 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Masubuchi, J.I. Takimoto, K. Koyama, G. Ianniruberto, G. Marrucci, F. Greco, J. Chem. Phys. 115, 4387 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    A.E. Likhtman, J. Chem. Phys. 38, 6128 (2005)Google Scholar
  30. 30.
    V.C. Chappa, D.C. Morse, A. Zippelius, Marcus Müller, Phys. Rev. Lett. 109, 148302 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    C. Peter, K. Kremer, Soft Matter 5, 4357 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    M. Tsige, G.S. Grest, Macromolecules 37, 4333 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    S. Peter, H. Meyer, J. Baschnagel, J. Chem. Phys. 131, 014903 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    D. Mukherji, C.M. Marques, K. Kremer, Nat. Commun. 5, 4882 (2015)CrossRefGoogle Scholar
  36. 36.
    D. Mukherji, C.M. Marques, T. Stuehn, K. Kremer (submitted)Google Scholar
  37. 37.
    P. Scharfer, G. Hernandez-Sosa, Karlsruhe Institute of Technology (private communication)Google Scholar
  38. 38.
    K.G. Soga, M.J. Zuckermann, H. Guo, Macromolecules 29, 1998 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    K.C. Daoulas, M. Müller, Adv. Polym. Sci. 224, 197 (2010)Google Scholar
  40. 40.
    K.C. Daoulas, D.N. Theodorou, V.A. Harmandaris, N.C. Karayiannis, V.G. Mavrantzas, Macromolecules 38, 7134 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    J.E. Mark (ed.), Physical Properties of Polymers Handbook (Springer, 2007)Google Scholar
  42. 42.
    L.A. Moreira, G. Zhang, F. Müller, T. Stuehn, K. Kremer, Macromol. Theory Simul. 24, 419 (2015)CrossRefGoogle Scholar
  43. 43.
    R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303, 823 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    A.C. Costa, M. Geoghegan, P. Vlcek, R.J. Composto, Macromolecules 36, 9897 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    J.D. Halverson, T. Brandes, O. Lenz, A. Arnold, S. Bevc, V. Starchenko, K. Kremer, T. Stuehn, D. Reith, Comput. Phys. Commun. 184, 1129 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    P. Gemünden, K.C. Daoulas, Soft Matter 11, 532 (2015)CrossRefGoogle Scholar
  47. 47.
    L. Livandaru, R.R. Netz, H.J. Kreuzer, Macromolecules 36, 3732 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    M. Rubinstein, R.H. Golby, Polymer Physics (Oxford University Press, Oxford, 2003)Google Scholar
  49. 49.
    M. Hömberg, M. Müller, J. Chem. Phys. 132, 155104 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    M. Müller, G.D. Smith, J. Polym. Sci. Pol. Phys. 43, 934 (2005)CrossRefGoogle Scholar
  51. 51.
    D.T. Wu, G.H. Fredrickson, J.P. Carton, A. Ajdari, L. Leibler, J. Polym. Sci. Pol. Phys. 33, 2373 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    J.W. Eastwood, R.W. Hocknew, D.N. Lowrence, Comput. Phys. Commun. 19, 215 (1980)ADSCrossRefGoogle Scholar
  53. 53.
    M. Deserno, C. Holm, J. Chem. Phys. 128, 184105 (1998)Google Scholar
  54. 54.
    R. Auhl, R. Everaers, G.S. Grest, K. Kremer, S.J. Plimpton, J. Chem. Phys. 119, 12718 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 83, 1619 (1979)CrossRefGoogle Scholar
  56. 56.
    J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 84, 178 (1980)CrossRefGoogle Scholar
  57. 57.
    J.M. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)ADSCrossRefGoogle Scholar
  58. 58.
    I.M. Lifshitz, A.Y. Grosberg, A.R. Khokhlov, Rev. Mod. Phys. 50, 683 (1978)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    M. Müller, L.G. MacDowell, Macromolecules 33, 3902 (2000)ADSCrossRefGoogle Scholar
  60. 60.
    A.J.M. Yang, P.D. Fleming, J.H. Gibbs, J. Chem. Phys. 64, 3732 (1976)ADSCrossRefGoogle Scholar
  61. 61.
    R. Evans, Adv. Phys. 28, 143 (1979)ADSCrossRefGoogle Scholar
  62. 62.
    J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1984)Google Scholar
  63. 63.
    S. Wu, J. Phys. Chem. 74, 632 (1970)CrossRefGoogle Scholar
  64. 64.
    P. Cifra, E. Nies, F.E. Karasz, Macromolecules 27, 1166 (1994)ADSCrossRefGoogle Scholar
  65. 65.
    K.F. Mansfield, D.N. Theodorou, Macromolecules 23, 4430 (1990)ADSCrossRefGoogle Scholar
  66. 66.
    I.A. Bitsanis, G. ten Brinke, J. Chem. Phys. 99, 3100 (1993)ADSCrossRefGoogle Scholar
  67. 67.
    D.N. Theodorou, Macromolecules 21, 1411 (1988)ADSCrossRefGoogle Scholar
  68. 68.
    D. Mukherji, G. Bartels, M.H. Müser, Phys. Rev. Lett. 100, 068301 (2008)ADSCrossRefGoogle Scholar
  69. 69.
    A. Cavallo, M. Müller, K. Binder, J. Phys. Chem. B 109, 6544 (2005)CrossRefGoogle Scholar
  70. 70.
    M. Müller, J. Chem. Phys. 116, 9930 (2002)ADSCrossRefGoogle Scholar
  71. 71.
    H. Meyer, N. Schulmann, J.E. Zabel, J.P. Wittmer, Comput. Phys. Commun. 182, 1949 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    C.A.J. Hoeve, E.A. DiMarzio, P. Peyser, J. Chem. Phys. 42, 2558 (1965)ADSCrossRefGoogle Scholar
  73. 73.
    J. Sarabadani, A. Milchev, T.A. Vilgis, J. Chem. Phys. 141, 044907 (2014)ADSCrossRefGoogle Scholar
  74. 74.
    M. Müller, B. Steinmüller, K.C. Daoulas, A. Ramirez-Hernandez, J.J. de Pablo, Phys. Chem. Chem. Phys. 13, 10491 (2011)CrossRefGoogle Scholar
  75. 75.
    M.H. Müser, M. Müller, J. Chem. Phys. 142, 174105 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Max-Planck-Institute for Polymer ResearchMainzGermany

Personalised recommendations