The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1505–1526 | Cite as

Accurate and general treatment of electrostatic interaction in Hamiltonian adaptive resolution simulations

  • M. Heidari
  • R. Cortes-Huerto
  • D. Donadio
  • R. Potestio
Regular Article Hybrid and Adaptive Coarse Graining Methods
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

In adaptive resolution simulations the same system is concurrently modeled with different resolution in different subdomains of the simulation box, thereby enabling an accurate description in a small but relevant region, while the rest is treated with a computationally parsimonious model. In this framework, electrostatic interaction, whose accurate treatment is a crucial aspect in the realistic modeling of soft matter and biological systems, represents a particularly acute problem due to the intrinsic long-range nature of Coulomb potential. In the present work we propose and validate the usage of a short-range modification of Coulomb potential, the Damped shifted force (DSF) model, in the context of the Hamiltonian adaptive resolution simulation (H-AdResS) scheme. This approach, which is here validated on bulk water, ensures a reliable reproduction of the structural and dynamical properties of the liquid, and enables a seamless embedding in the H-AdResS framework. The resulting dual-resolution setup is implemented in the LAMMPS simulation package, and its customized version employed in the present work is made publicly available.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Grest, K. Kremer, Phys. Rev. A. 33, 3628 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    K. Kremer, G. Grest, I. Carmesin, Phys. Rev. Lett. 61, 566 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    L. Yelash, M. Müller, W. Paul, K. Binder, J. Chem. Theory Comput. 2, 588 (2006)CrossRefGoogle Scholar
  4. 4.
    T. Spyriouni, C. Tzoumanekas, D. Theodorou, F. Müller-Plathe, G. Milano, Macromolecules 40, 3876 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    J. McCammon, M. Karplus, Nature 268, 765 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    M. Karplus, J. McCammon, Nature 277, 578 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    P. Raiteri, A. Laio, F.L. Gervasio, C. Micheletti, M. Parrinello, J. Phys. Chem. B. 110, 3533 (2006)CrossRefGoogle Scholar
  8. 8.
    H. Lou, R.I. Cukier, J. Phys. Chem. B. 110, 12796 (2006)CrossRefGoogle Scholar
  9. 9.
    K. Arora, C.L. Brooks, Proc. Natl. Acad. Sci. USA 104, 18496 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    F. Pontiggia, A. Zen, C. Micheletti, Biophys. J. 95, 5901 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    M.M. Tirion, D. ben Avraham, J. Mol. Biol. 230, 186 (1993)CrossRefGoogle Scholar
  12. 12.
    M.M. Tirion, Phys. Rev. Lett. 77, 1905 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    I. Bahar, A.R. Atilgan, B. Erman, Folding and Design 2, 173 (1997)CrossRefGoogle Scholar
  14. 14.
    C. Micheletti, P. Carloni, A. Maritan, Proteins 55, 635 (2004)CrossRefGoogle Scholar
  15. 15.
    R. Potestio, F. Pontiggia, C. Micheletti, Biophys. J. 96, 4993 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    C. Globisch, V. Krishnamani, M. Deserno, C. Peter, PLoS. ONE 8, e60582, 04 (2013)CrossRefGoogle Scholar
  17. 17.
    K. Kremer, Comput. Simul. Soft Matter Sci. 53 (2000)Google Scholar
  18. 18.
    K. Kremer, F. Müller-Plathe, MRS Bull. 26, 205 (2001)CrossRefGoogle Scholar
  19. 19.
    N.A. van der Vegt, C. Peter, K. Kremer, Structure-Based Coarse- and Fine-Graining in Soft Matter Simulations (CRC Press - Taylor and Francis Group, 2009)Google Scholar
  20. 20.
    C. Hijón, E. Vanden-Eijnden, R. Delgado-Buscalioni, P. Español, Farad. Discuss. 144, 301 (2010); discussion 323–45, 467–81 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    W. Noid, Systematic Methods for Structurally Consistent Coarse-Grained Models, 924 of Methods in Molecular Biology (Humana Press, 2013)Google Scholar
  22. 22.
    W.G. Noid, J. Chem. Phys. 139, 090901 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    M. Praprotnik, L. Delle Site, K. Kremer, J. Chem. Phys. 123, 224106 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    M. Praprotnik, L. Delle Site, K. Kremer, Phys. Rev. E 73, 066701 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    M. Praprotnik, L. Delle Site, K. Kremer, J. Chem. Phys. 126, 134902 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    M. Praprotnik, L. Delle Site, K. Kremer, Ann. Rev. Phys. Chem. 59, 545 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    S. Fritsch, C. Junghans, K. Kremer, J. Chem. Theo. Comput. 8, 398 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site, K. Kremer, Phys. Rev. Lett. 108, 170602 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    R. Potestio, S. Fritsch, P. Español, R. Delgado-Buscalioni, K. Kremer, R. Everaers, D. Donadio, Phys. Rev. Lett. 110, 108301 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    R. Potestio, P. Español, R. Delgado-Buscalioni, R. Everaers, K. Kremer, D. Donadio, Phys. Rev. Lett. 111, 060601 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    A. Agarwal, H. Wang, C. Schütte, L.D. Site, J. Chem. Phys. 141, 034102 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    K. Kreis, D. Donadio, K. Kremer, R. Potestio, Europhys. Lett. 108, 30007 (2014)CrossRefGoogle Scholar
  33. 33.
    P. Español, R. Delgado-Buscalioni, R. Everaers, R. Potestio, D. Donadio, K. Kremer, J. Chem. Phys. 142, 064115 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    B.J. Lambeth, C. Junghans, K. Kremer, C. Clementi, L. Delle Site, J. Chem. Phys. 133, 221101 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    A.C. Fogarty, R. Potestio, K. Kremer, J. Chem. Phys. 142, 195101 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    P.P. Ewald, Ann. Phys. 64, 253 (1921)CrossRefGoogle Scholar
  37. 37.
    L. Onsager, J. Amer. Chem. Soc. 58, 1486 (1936)CrossRefGoogle Scholar
  38. 38.
    J.A. Barker, R.O. Watts, Mol. Phys. 26, 789 (1973)ADSCrossRefGoogle Scholar
  39. 39.
    D. van der Spoel, P.J. van Maaren, H.J.C. Berendsen, J. Chem. Phys. 108, 10220 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    S. Bevc, C. Junghans, K. Kremer, M. Praprotnik, New J. Phys. 15, 105007 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    I. Fukuda, H. Nakamura, Biophys. Rev. 4, 161, (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    D. Wolf, P. Keblinski, S.R. Phillpot, J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    C.J. Fennell, J.D. Gezelter, J. Chem. Phys. 124, 23 (2006)CrossRefGoogle Scholar
  44. 44.
    M.A. Kastenholz, P.H. Hünenberger, J. Phys. Chem. B 108, 774 (2004)CrossRefGoogle Scholar
  45. 45.
    D.A.C. Beck, R.S. Armen, V. Daggett, Biochemistry 44, 609 (2005)CrossRefGoogle Scholar
  46. 46.
    R.D. Lins, U. Röthlisberger, J. Chem. Theo. Comput. 2, 246 (2006)CrossRefGoogle Scholar
  47. 47.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    R.W. Hockney, J.W. Eastwood, Computer simulation using particles (CRC Press, 1988)Google Scholar
  49. 49.
    J. Kirkwood, J. Chem. Phys. 3, 300 (1935)ADSCrossRefGoogle Scholar
  50. 50.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)Google Scholar
  51. 51.
    D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comp. Chem. 26, 1701 (2005)CrossRefGoogle Scholar
  52. 52.
    D. Wolf, Phys. Rev. Lett. 68, 3315 (1992)ADSCrossRefGoogle Scholar
  53. 53.
    S. Fritsch, R. Potestio, D. Donadio, K. Kremer, J. Chem. Theory Comput. 10, 816 (2014) PMID: 26580055CrossRefGoogle Scholar
  54. 54.
    F. Bresme, A. Lervik, D. Bedeaux, S. Kjelstrup, Phys. Rev. Lett. 101, 020602 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    J.R. Errington, P.G. Debenedetti, Nature 409, 318 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    J. Kohanoff, Comput. Mat. Sci. 2, 221 (1994)CrossRefGoogle Scholar
  57. 57.
    T. Youngs, “dlputils: Calculate properties from molecular dynamics trajectories”, (2016) https://www.projectaten.com/dlputils
  58. 58.
    H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)CrossRefGoogle Scholar
  59. 59.
    L.X. Dang, B.M. Pettitt, J. Phys. Chem. 91, 3349 (1987)CrossRefGoogle Scholar
  60. 60.
    Y. Wu, H.L. Tepper, G.A. Voth, J. Chem. Phys. 124, 2 (2006)Google Scholar
  61. 61.
    J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)ADSCrossRefGoogle Scholar
  62. 62.
    E. Duboué-Dijon, D. Laage, J. Phys. Chem. B, 119, 8406 (2015) PMID: 26054933CrossRefGoogle Scholar
  63. 63.
    C. Avendaño, A. Gil-Villegas, Mol. Phys. 104, 1475 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    T.G. Desai, J. Chem. Phys. 127 (2007)Google Scholar
  65. 65.
    Y. Nagata, S. Mukamel, J. Amer. Chem. Soc. 132, 6434 (2010)CrossRefGoogle Scholar
  66. 66.
    E.E. Gdoutos, R. Agrawal, H.D. Espinosa, Inter. J. Numer. Meth. Eng. 84, 1541 (2010)CrossRefGoogle Scholar
  67. 67.
    W. Shi, E.J. Maginn, J. Phys. Chem. B 112, 2045 (2008)CrossRefGoogle Scholar
  68. 68.
    K. Kreis, A.C. Fogarty, K. Kremer, R. Potestio, Eur. Phys. J. Special Topics 224, 2289 (2015)ADSCrossRefGoogle Scholar
  69. 69.
    S. Bellissima, M. Neumann, E. Guarini, U. Bafile, F. Barocchi, Phys. Rev. E 92, 042166, (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • M. Heidari
    • 1
  • R. Cortes-Huerto
    • 1
  • D. Donadio
    • 2
    • 1
  • R. Potestio
    • 1
  1. 1.Max Planck Institute for Polymer ResearchMainzGermany
  2. 2.Department of ChemistryUniversity of California DavisOne Shields Ave. DavisUSA

Personalised recommendations