The European Physical Journal Special Topics

, Volume 226, Issue 3, pp 519–527 | Cite as

Delay times in chaotic quantum systems

Regular Article
Part of the following topical collections:
  1. Nonlinearity, Nonequilibrium and Complexity: Questions and Perspectives in Statistical Physics

Abstract

Based on recent results of the joint moments of proper delay times of open chaotic systems with ideal coupling, a new insight to obtain the partial delay times distribution, for an arbitrary number of channels and symmetry, is given. This distribution is completely verified for all symmetry classes by means of random matrix theory simulations of ballistic chaotic cavities. In addition, the normalization constant of the Laguerre ensemble is obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.P. Wigner, Phys. Rev. 98, 145 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    F.T. Smith, Phys. Rev. 118, 349 (1960)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    L. Lyuboshits, Phys. Lett. B 72, 41 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    M. Bauer, P.A. Mello, K.W. McVoy, Z. Phys. A 293, 151 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    R. Landauer, Th. Martin, Rev. Mod. Phys. 66, 217 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    P.J. Price, Phys. Rev. B 48, 17301 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    G. Iannaccone, Phys. Rev. B 51, 4727 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    G. Berkolaiko, J. Kuipers, J. Phys. A: Math. Theor. 43, 035101 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    F. Mezzadri, N.J. Simm, J. Math. Phys. 52, 103511 (2011)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Mezzadri, N.J. Simm, J. Math. Phys. 53, 053504 (2012)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Kuipers, D.V. Savin, M. Sieber, New J. Phys. 16, 123018 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    M. Marciani, P.W. Brouwer, C.W.J. Beenakker, Phys. Rev B 90, 045403 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    M. Novaes, J. Math. Phys. 56, 062110 (2015)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Novaes, J. Math. Phys. 56, 062109 (2015)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Feist, O. Zatsarinny, S. Nagele, R. Pazourek, J. Burgdörfer, X. Guan, K. Bartschat, B.I. Schneider, Phys. Rev. A 89, 033417 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    I.A. Ivanov, A.S. Kheifets, Phys. Rev. A 89, 043405 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    P.C. Deshmukh, A. Mandal, S. Saha, A.S. Kheifets, V.K. Dolmatov, S.T. Manson, Phys. Rev. A 69, 053424 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A. Chacon, M. Lein, C. Ruiz, Phys. Rev. A 89, 053427 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A.L. Cavalieri, Y. Komninos, Th. Mercouris, C.A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A.M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, V.S. Yakovlev, Science 328, 1658 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J. Lambe, R.C. Jaklevic, Phys. Rev. Lett. 22, 1371 (1969)ADSCrossRefGoogle Scholar
  21. 21.
    M. Büttiker, J. Phys.: Condens. Matter 5, 9361 (1993)ADSGoogle Scholar
  22. 22.
    M. Büttiker, A. Prêtre, H. Thomas, Phys. Rev. Lett. 70, 4114 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    S.A. van Langen, P.G. Silvestrov, C.W.J. Beenakker, Superlatt. Microstruct. 23, 691 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    P.W. Brouwer, S.A. van Langen, K.M. Frahm, M. Büttiker, C.W.J. Beenakker, Phys. Rev. Lett. 79, 913 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    P.W. Brouwer, Phys. Rev. B 58, R10135 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    P.W. Brouwer, K.M. Frahm, C.W.J. Beenakker, Waves Random Media 9, 91 (1999)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Y.V. Fyodorov, H.-J. Sommers, J. Math. Phys. 38, 1918 (1997)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    P.W. Brouwer, K.M. Frahm, C.W.J. Beenakker, Phys. Rev. Lett. 78, 4737 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    D.V. Savin, Y.V. Fyodorov, H.-J. Sommers, Phys. Rev. E 63, 035202(R) (2001)ADSCrossRefGoogle Scholar
  30. 30.
    V.A. Gopar, P.A. Mello, M. Büttiker, Phys. Rev. Lett. 77, 3005 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Y.V. Fyodorov, D.V. Savin, H.-J. Sommers, Phys. Rev. E. 55, R4857 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    Y.V. Fyodorov, H.-J. Sommers, Phys. Rev. Lett. 76, 4709 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    P. Šeba, K. Życzkowski, J. Zakrzewski, Phys. Rev. E 54, 2438 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    A.M. Martínez-Argüello, M. Martínez-Mares, J.C. García, J. Math. Phys. 55, 081901 (2014)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M.L. Mehta, Random Matrices (Academic, New York 1991)Google Scholar
  36. 36.
    F.J. Dyson, J. Math. Phys. (N.Y.) 3, 140 (1962)ADSCrossRefGoogle Scholar
  37. 37.
    T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Phys. Rep. 299, 189 (1998)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    J.J.M. Verbaarschot, H.A. Weidenmüller, M.R. Zirnbauer, Phys. Rep. 129, 367 (1985)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    M. Martínez-Mares, C.H. Lewenkopf, E.R. Mucciolo, Phys. Rev. B 69, 085301 (2004)ADSCrossRefGoogle Scholar
  41. 41.

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Departamento de Física, Universidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMexico
  2. 2.Instituto de Ciencias Físicas, Universidad Nacional Autónoma de MéxicoCuernavaca Mor.Mexico

Personalised recommendations