Fast relaxation of coarse-grained models of polymer interphases by hybrid particle-field molecular dynamics: Polystyrene-silica nanocomposites as an example

Abstract

Polymer composites attract large attention for their industrial use because of their unique features. The preparation of equilibrated melts of long entangled chains in the presence of a solid nanoparticle in molecular dynamics simulations is a very difficult task due to the slow relaxation time. We present a coarse-grained (CG) model suitable for polymer nanocomposites which combines Iterative-Boltzmann-Inversion derived polymer models, the hybrid particle-field representation of non-bonded interactions, and a convenient description of a solid nanoparticle suitable for hybrid particle-field models. The proposed approach is applied to test simulations of well characterized polystyrene-silica nanocomposites models. Finally, procedures for an efficient relaxation of pure polymer melts and interphase structures of large molecular weight nanocomposites are proposed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.H. Koo, Polymer Nanocomposites: Processing, Characterization, and Application (New York: McGraw-Hill, 2006)

  2. 2.

    R. Krishnamoorti, MRS Bull. 32, 341 (2007)

    Article  Google Scholar 

  3. 3.

    D. Schmidt, D. Shah, E.P. Giannelis, Curr. Opinion Solid State Mater. Sci. 6, 205 (2002)

    ADS  Article  Google Scholar 

  4. 4.

    V. Ganesan, A. Jayaraman, Soft Matter 10, 13 (2014)

    ADS  Article  Google Scholar 

  5. 5.

    J. Ouyang, C.-W. Chu, C.R. Szmanda, L. Ma, Y. Yang, Nat. Mater. 3, 918 (2004)

    ADS  Article  Google Scholar 

  6. 6.

    S.-W. Lee, C. Mao, C.E. Flynn, A.M. Belcher, Science 296, 892 (2002)

    ADS  Article  Google Scholar 

  7. 7.

    L.D. Bozano, B.W. Kean, V.R. Deline, J.R. Salem, J.C. Scott, Appl. Phys. Lett. 84, 607 (2004)

    ADS  Article  Google Scholar 

  8. 8.

    S.K. Kumar, N. Jouault, B. Benicewicz, T. Neely, Macromolecules 46, 3199 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    G. Allegra, G. Raos, M. Vacatello, Prog. Polymer Sci. 33, 683 (2008)

    Article  Google Scholar 

  10. 10.

    J. Jancar, J.F. Douglas, F.W. Starr, S.K. Kumar, P. Cassagnau, A.J. Lesser, et al., Polymer 51, 3321 (2010)

    Article  Google Scholar 

  11. 11.

    G. Raos, J. Idé, ACS Macro Lett. 3, 721 (2014)

    Article  Google Scholar 

  12. 12.

    A. Karatrantos, N. Clarke, M. Kröger, A Rev. Polymer Rev. 1 (2016)

  13. 13.

    D. Barbier, D. Brown, A.-C. Grillet, S. Neyertz, Macromolecules. 37, 4695 (2004)

    ADS  Article  Google Scholar 

  14. 14.

    G. Milano, G. Santangelo, F. Ragone, L. Cavallo, A. Di Matteo, J. Phys. Chem. C. 115, 15154 (2011)

    Article  Google Scholar 

  15. 15.

    T.V.M. Ndoro, E. Voyiatzis, A. Ghanbari, D.N. Theodorou, M.C. Boöhm, F. Müller-Plathe, Macromolecules 44, 2316 (2011)

    ADS  Article  Google Scholar 

  16. 16.

    H. Eslami, M. Rahimi, F. Müller-Plathe, Macromolecules 46, 8680 (2013)

    ADS  Article  Google Scholar 

  17. 17.

    A. De Nicola, R. Avolio, F. Della Monica, G. Gentile, M. Cocca, C. Capacchione, et al., RSC Adv. 5, 71336 (2015)

    Article  Google Scholar 

  18. 18.

    D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 24, 1624 (2003)

    Article  Google Scholar 

  19. 19.

    T. Chen, H.-J. Qian, Y.-L. Zhu, Z.-Y. Lu, Macromolecules 48, 2751 (2015)

    ADS  Article  Google Scholar 

  20. 20.

    A. Ghanbari, T.V.M. Ndoro, F. Leroy, M. Rahimi, M.C. Böhm, F. Müller-Plathe, Macromolecules 45, 572 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    D.M. Huang, R. Faller, K. Do, A.J. Moulé, J. Chem. Theory Comput. 6, 526 (2010)

    Article  Google Scholar 

  22. 22.

    T. Kawakatsu, Statistical Physics of Polymers (Springer: Berlin, 2004)

  23. 23.

    G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, 2005)

  24. 24.

    M.W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994)

    ADS  Article  Google Scholar 

  25. 25.

    F. Drolet, G.H. Fredrickson, Phys. Rev. Lett. 83, 4317 (1999)

    ADS  Article  Google Scholar 

  26. 26.

    G.H. Fredrickson, V. Ganesan, F. Drolet, Macromolecules 35, 16 (2002)

    ADS  Article  Google Scholar 

  27. 27.

    Y. Lauw, F.A.M. Leermakers, M.A.C. Stuart, J. Phys. Chem. B. 110, 465 (2006)

    Article  Google Scholar 

  28. 28.

    D.Q. Ly, T. Honda, T. Kawakatsu, A.V. Zvelindovsky, Macromolecules 41, 4501 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    J.R. Roan, T. Kawakatsu, J. Chem. Phys. 116, 7283 (2002)

    ADS  Article  Google Scholar 

  30. 30.

    J.R. Roan, T. Kawakatsu, J. Chem. Phys. 116, 7295 (2002)

    ADS  Article  Google Scholar 

  31. 31.

    A.C. Balazs, C. Singh, E. Zhulina, Macromolecules 31, 8370 (1998)

    ADS  Article  Google Scholar 

  32. 32.

    F.A. Detcheverry, H. Kang, K.C. Daoulas, M. Müller, P.F. Nealey, J.J. de Pablo, Macromolecules 41, 4989 (2008)

    ADS  Article  Google Scholar 

  33. 33.

    S.W. Sides, B.J. Kim, E.J. Kramer, G.H. Fredrickson, Phys. Rev. Lett., 96 (2006)

  34. 34.

    P.G. Khalatur, 1.16 – Molecular Dynamics Simulations in Polymer Science: Methods and Main Results, edited by K. Matyjaszewski, M. Möller, Polymer Science: A Comprehensive Reference (Amsterdam: Elsevier, 2012), p. 417–60

  35. 35.

    K.M. Langner, G.J.A. Sevink, Soft Matter 8, 5102 (2012)

    ADS  Article  Google Scholar 

  36. 36.

    K.C. Daoulas, M. Muller, J. Chem. Phys. 125, 18 (2006)

    Article  Google Scholar 

  37. 37.

    M.P. Stoykovich, M. Muller, S.O. Kim, H.H. Solak, E.W. Edwards, J.J. de Pablo, et al., Science 308, 1442 (2005)

    ADS  Article  Google Scholar 

  38. 38.

    A. Ramírez-Hernández, H.S. Suh, P.F. Nealey, J.J. de Pablo, Macromolecules 47, 3520 (2014)

    ADS  Article  Google Scholar 

  39. 39.

    Y. Zhao, A. De Nicola, T. Kawakatsu, G. Milano J. Comput. Chem. 33, 868 (2012)

    Article  Google Scholar 

  40. 40.

    A. De Nicola, S. Hezaveh, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, Micellar drug nanocarriers and biomembranes: how do they interact? Phys. Chem. Chem. Phys. (2014)

  41. 41.

    A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, J. Chem. Theory Computation 7, 2947 (2011)

    Article  Google Scholar 

  42. 42.

    A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, Theor. Chem. Accounts 131, 1167 (2012)

    Article  Google Scholar 

  43. 43.

    A. De Nicola, G. Milano, T. Kawakatsu, Macromolec. Chem. Phys. 214, 1940 (2013)

    Article  Google Scholar 

  44. 44.

    G. Milano, T. Kawakatsu, J. Chem. Phys. 130, 214106 (2009)

    ADS  Article  Google Scholar 

  45. 45.

    G. Milano, T. Kawakatsu, J. Chem. Phys. 133, 214102 (2010)

    ADS  Article  Google Scholar 

  46. 46.

    K.C. Daoulas, M. Muller, J.J. de Pablo, P.F. Nealey, G.D. Smith, Soft Matter 2, 573 (2006)

    ADS  Article  Google Scholar 

  47. 47.

    G.J.A. Sevink, M. Charlaganov, J.G.E.M. Soft Matter 9, 2816 (2013)

    ADS  Article  Google Scholar 

  48. 48.

    G.J.A. Sevink, A.V. Zvelindovsky, Macromolecules 38, 7502 (2005)

    ADS  Article  Google Scholar 

  49. 49.

    T. Spyriouni, C. Tzoumanekas, D. Theodorou, F. Muller-Plathe, G. Milano, Macromolecules 40, 3876 (2007)

    ADS  Article  Google Scholar 

  50. 50.

    P.K. Depa, J.K. Maranas, J. Chem. Phys. 123, 094901 (2005)

    ADS  Article  Google Scholar 

  51. 51.

    W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, O. Hahn, Acta Polymerica 49, 61 (1998)

    Article  Google Scholar 

  52. 52.

    W. Tschöp, K. Kremer, O. Hahn, J. Batoulis, T. Bürger, Acta Polymerica 49, 75 (1998)

    Article  Google Scholar 

  53. 53.

    G. Milano, F. Muller-Plathe, J. Phys. Chem. B. 109, 18609 (2005)

    Article  Google Scholar 

  54. 54.

    V.A. Harmandaris, N.P. Adhikari, N.F.A. van der Vegt, K. Kremer, Macromolecules 39, 6708 (2006)

    ADS  Article  Google Scholar 

  55. 55.

    Q. Sun, R. Faller, J. Chem. Theory Comput. 2, 607 (2006)

    Article  Google Scholar 

  56. 56.

    D.M. Huang, R. Faller, K. Do, A.J. Moulé, J. Chem. Theory Comput. 6, 526 (2009)

    Article  Google Scholar 

  57. 57.

    A. De Nicola, T. Kawakatsu, C. Rosano, M. Celino, M. Rocco, G. Milano, J. Chem. Theory Comput. 11, 4959 (2015)

    Article  Google Scholar 

  58. 58.

    G. Milano, T. Kawakatsu, A. De Nicola, Phys. Biol. 10, 045007 (2013)

    ADS  Article  Google Scholar 

  59. 59.

    K.C. Daoulas, M. Muller, M.P. Stoykovich, S.M. Park, Y.J. Papakonstantopoulos, J.J. de Pablo, et al., Phys. Rev. Lett. 96 (2006)

  60. 60.

    M. Rahimi, I. Iriate-Carretero, A. Ghanbari, M.C. Böhm, F. Müller-Plathe, Nanotechnology 23, 305702 (2012)

    Article  Google Scholar 

  61. 61.

    J.E. Hirsch, Phys. Rev. B. 28, 4059 (1983)

    ADS  Article  Google Scholar 

  62. 62.

    H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)

    ADS  Article  Google Scholar 

  63. 63.

    H.A. Karimi-Varzaneh, H.-J. Qian, X. Chen, P. Carbone, F. Müller-Plathe, J. Comput. Chem. 32, 1475 (2011)

    Article  Google Scholar 

  64. 64.

    H.J.C. Berendsen, J.P.M. Postma, W.F.v. Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)

    ADS  Article  Google Scholar 

  65. 65.

    V.A. Harmandaris, D. Reith, N.F.A. van der Vegt, K. Kremer, Macromolecular Chem. Phys. 208, 2109 (2007)

    Article  Google Scholar 

  66. 66.

    H.-J. Qian, P. Carbone, X. Chen, H.A. Karimi-Varzaneh, C.C. Liew, F. Müller-Plathe, Macromolecules 41, 9919 (2008)

    ADS  Article  Google Scholar 

  67. 67.

    H.A. Karimi-Varzaneh, N.F.A. van der Vegt, F. Müller-Plathe, P. Carbone, Chem. Phys. Chem. 13, 3428 (2012)

    Google Scholar 

  68. 68.

    G. Milano, S. Goudeau, F. Müller-Plathe, J. Polymer Sci. Part B: Polymer Phys. 43, 871 (2005)

    ADS  Article  Google Scholar 

  69. 69.

    A. De Nicola, T. Kawakatsu, G. Milano, J. Chem. Theory Comput. 10, 5651 (2014)

    Article  Google Scholar 

  70. 70.

    D. Brown, P. Mélé, S. Marceau, N.D. Albérola, Macromolecules 36, 1395 (2003)

    ADS  Article  Google Scholar 

  71. 71.

    L.A. Moreira, G. Zhang, F. Müller, T. Stuehn, K. Kremer, Macromolec. Theory Simul. 24, 419 (2015)

    Article  Google Scholar 

  72. 72.

    R. Auhl, R. Everaers, G.S. Grest, K. Kremer, S.J. Plimpton, J. Chem. Phys. 119, 12718 (2003)

    ADS  Article  Google Scholar 

  73. 73.

    Y. Ding, A. Kisliuk, A.P. Sokolov, Macromolecules 37, 161 (2004)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Antonio De Nicola or Toshihiro Kawakatsu or Florian Müller-Plathe or Giuseppe Milano.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Nicola, A., Kawakatsu, T., Müller-Plathe, F. et al. Fast relaxation of coarse-grained models of polymer interphases by hybrid particle-field molecular dynamics: Polystyrene-silica nanocomposites as an example. Eur. Phys. J. Spec. Top. 225, 1817–1841 (2016). https://doi.org/10.1140/epjst/e2016-60127-0

Download citation