Skip to main content

Sperm as microswimmers – navigation and sensing at the physical limit

Abstract

Many cells and microorganisms have evolved a motility apparatus to explore their surroundings. For guidance, these biological microswimmers rely on physical and chemical cues that are transduced by cellular pathways into directed movement – a process called taxis. Only few biological microswimmers have been studied as detailed as sperm from sea urchins. Sperm and eggs are released into the seawater. To enhance the chances of fertilization, eggs release chemical factors – called chemoattractants – that establish a chemical gradient and, thereby, guide sperm to the egg. Sea urchin sperm constitute a unique model system for understanding cell navigation at every level: from molecules to cell behaviours. We will outline the chemotactic signalling pathway of sperm from the sea urchin Arbacia punctulata and discuss how signalling controls navigation in a chemical gradient. Finally, we discuss recent insights into sperm chemotaxis in three dimensions (3D).

References

  1. E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    ADS  Article  Google Scholar 

  2. L. Alvarez, B.M. Friedrich, G. Gompper, U.B. Kaupp, Trends Cell Biol. 24, 198 (2014)

    Article  Google Scholar 

  3. R.G. Winkler, Eur. Phys. J. Special Topics 225, 2079 (2016)

    ADS  Article  Google Scholar 

  4. M. Pichlo, S. Bungert-Plumke, I. Weyand, R. Seifert, W. Bönigk, T. Strünker, N.D. Kashikar, N. Goodwin, A. Muller, H.G. Körschen, et al., J. Cell Biol. 206, 541 (2014)

    Article  Google Scholar 

  5. R. Seifert, M. Flick, W. Bonigk, L. Alvarez, C. Trotschel, A. Poetsch, A. Muller, N. Goodwin, P. Pelzer, N.D. Kashikar, et al., EMBO J. 34, 379 (2015)

    Article  Google Scholar 

  6. T. Strünker, L. Alvarez, U.B. Kaupp, Curr. Opin. Neurobiol. 34, 110 (2015)

    Article  Google Scholar 

  7. L. Alvarez, L. Dai, B.M. Friedrich, N.D. Kashikar, I. Gregor, R. Pascal, U.B. Kaupp, J. Cell Biol. 196, 653 (2012)

    Article  Google Scholar 

  8. J.F. Jikeli, L. Alvarez, B.M. Friedrich, L.G. Wilson, R. Pascal, R. Colin, M. Pichlo, A. Rennhack, C. Brenker, U.B. Kaupp, Nat. Commun. 6, 7985 (2015)

    ADS  Article  Google Scholar 

  9. K. Shiba, S.A. Baba, T. Inoue, M. Yoshida, Proc. Natl. Acad. Sci. U.S.A. 105, 19312 (2008)

    ADS  Article  Google Scholar 

  10. U.B. Kaupp, J. Gen. Physiol. 140, 583 (2012)

    Article  Google Scholar 

  11. D. Carre, C. Sardet, Biol. Cell 40, 128 (1981)

    Google Scholar 

  12. G.E. Ward, C.J. Brokaw, D.L. Garbers, V.D. Vacquier, J. Cell Biol. 101, 2324 (1985)

    Article  Google Scholar 

  13. A. Guerrero, T. Nishigaki, J. Carneiro, T. Yoshiro, C.D. Wood, A. Darszon, Dev. Biol. 344, 52 (2010)

    Article  Google Scholar 

  14. N.D. Kashikar, L. Alvarez, R. Seifert, I. Gregor, O. Jackle, M. Beyermann, E. Krause, U.B. Kaupp, J. Cell Biol. 198, 1075 (2012)

    Article  Google Scholar 

  15. U.B. Kaupp, J. Solzin, E. Hildebrand, J.E. Brown, A. Helbig, V. Hagen, M. Beyermann, F. Pampaloni, I. Weyand, Nat. Cell Biol. 5, 109 (2003)

    Article  Google Scholar 

  16. D.L. Garbers, D.G. Lowe, L.J. Dangott, M. Chinkers, D.S. Thorpe, J.K. Bentley, C.S. Ramarao, D.V. Goeddel, S. Singh, Cold Spring Harbor Symp. Quant. Biol. LIII, 993 (1988)

    Article  Google Scholar 

  17. W. Bönigk, A. Loogen, R. Seifert, N.D. Kashikar, C. Klemm, E. Krause, V. Hagen, E. Kremmer, T. Strünker, U.B. Kaupp, Sci. Signal. 2, ra68 (2009)

    Article  Google Scholar 

  18. T. Strünker, I. Weyand, W. Bönigk, Q. Van, A. Loogen, J.E. Brown, N.D. Kashikar, V. Hagen, E. Krause, U.B. Kaupp, Nat. Cell Biol. 8, 1149 (2006)

    Article  Google Scholar 

  19. B.E. Galindo, J.L. de la Vega-Beltran, P. Labarca, V.D. Vacquier, A. Darszon, Biochem. Biophys. Res. Commun. 354, 668 (2007)

    Article  Google Scholar 

  20. H.C. Lee, D.L. Garbers, J. Biol. Chem. 261, 16026 (1986)

    Google Scholar 

  21. M. Nomura, V.D. Vacquier, Cell Motil. Cytoskel. 63, 582 (2006)

    Article  Google Scholar 

  22. D. Wang, S.M. King, T.A. Quill, L.K. Doolittle, D.L. Garbers, Nat. Cell Biol. 5, 1117 (2003)

    Article  Google Scholar 

  23. R. Gauss, R. Seifert, U.B. Kaupp, Nature 393, 583 (1998)

    ADS  Article  Google Scholar 

  24. H.J. Gunaratne, V.D. Vacquier, FEBS Lett. 580, 3900 (2006)

    Article  Google Scholar 

  25. Y.H. Su, V.D. Vacquier, Mol. Biol. Cell 17, 114 (2006)

    Article  Google Scholar 

  26. Y.-H. Su, V.D. Vacquier, Proc. Natl. Acad. Sci. USA 99, 6743 (2002)

    ADS  Article  Google Scholar 

  27. J.R. Maddock, L. Shapiro, Science 259, 1717 (1993)

    ADS  Article  Google Scholar 

  28. D. Bray, M.D. Levin, C.J. Morton-Firth, Nature 393, 85 (1998)

    ADS  Article  Google Scholar 

  29. T.A.J. Duke, D. Bray, PNAS 96, 10104 (1999)

    ADS  Article  Google Scholar 

  30. J.E. Gestwicki, L.L. Kiessling, Nature 415, 81 (2002)

    ADS  Article  Google Scholar 

  31. V. Sourjik, H.C. Berg, Nature 428, 437 (2004)

    ADS  Article  Google Scholar 

  32. E.N.J. Pugh, T.D. Lamb In Handbook of Biological Physics, Volume 3, edited by D.G. Stavenga, W.J. DeGrip and E.N.J. Pugh, (North-Holland, Elsevier Science B.V., 2000), p. 183

  33. K.W. Yau, R.C. Hardie, Cell 139, 246 (2009)

    Article  Google Scholar 

  34. U.B. Kaupp, Nat. Rev. Neurosci. 11, 188 (2010)

    Google Scholar 

  35. A. Huber, P. Sander, A. Gobert, M. Bahner, R. Hermann, R. Paulsen, EMBO J. 15, 7036 (1996)

    Google Scholar 

  36. S. Tsunoda, J. Sierralta, Y. Sun, R. Bodner, E. Suzuki, A. Becker, M. Socolich, C.S. Zuker, Nature 388, 243 (1997)

    ADS  Article  Google Scholar 

  37. K. Scott, C.S. Zuker, Nature 395, 805 (1998)

    ADS  Article  Google Scholar 

  38. T.C. Rich, K.A. Fagan, H. Nakata, J. Schaack, D.M.F. Cooper, J.W. Karpen, J. Gen. Physiol. 116, 147 (2000)

    Article  Google Scholar 

  39. T.C. Rich, T.E. Tse, J.G. Rohan, J. Schaack, J.W. Karpen, J. Gen. Physiol. 118, 63 (2001)

    Article  Google Scholar 

  40. M. Gunkel, J. Schöneberg, W. Alkhaldi, S. Irsen, F. Noe, U.B. Kaupp, A. Al-Amoudi, Structure 23, 628 (2015)

    Article  Google Scholar 

  41. D. Fotiadis, Y. Liang, S. Filipek, D.A. Saperstein, A. Engel, K. Palczewski, Nature 421, 127 (2003)

    ADS  Article  Google Scholar 

  42. H.C. Berg, E.M. Purcell, Biophys. J. 20, 193 (1977)

    ADS  Article  Google Scholar 

  43. H.C. Berg, Random Walks in Biology (Princeton University Press, Princeton, New Jersey, 1993)

  44. M. Li, G.L. Hazelbauer, J. Bacteriol. 186, 3687 (2004)

    Article  Google Scholar 

  45. V.J. Cannistraro, G.D. Glekas, C.V. Rao, G.W. Ordal, J. Bacteriol. 193, 3220 (2011)

    Article  Google Scholar 

  46. V. Sourjik, N.S. Wingreen, Curr. Opin. Cell Biol. 24, 262 (2012)

    Article  Google Scholar 

  47. G.E. Ward, G.W. Moy, V.D. Vacquier, Adv. Exp. Med. Biol. 207, 359 (1986)

    Google Scholar 

  48. N. Suzuki, H. Shimomura, E.W. Radany, C.S. Ramarao, G.E. Ward, J.K. Bentley, D.L. Garbers, J. Biol. Chem. 259, 14874 (1984)

    Google Scholar 

  49. T. Doan, A. Mendez, P.B. Detwiler, J. Chen, F. Rieke, Science 313, 530 (2006)

    ADS  Article  Google Scholar 

  50. A. Mendez, M.E. Burns, A. Roca, J. Lem, L.-W. Wu, M.I. Simon, D.A. Baylor, J. Chen, Neuron 28, 153 (2000)

    Article  Google Scholar 

  51. G.G. Whitlock, T.D. Lamb, Neuron 23, 337 (1999)

    Article  Google Scholar 

  52. O.P. Gross Jr.E.N. Pugh, M.E. Burns, Biophys. J. 102, 1775 (2012)

    ADS  Article  Google Scholar 

  53. O.P. Gross Jr., E.N. Pugh, M.E. Burns, Neuron 76, 370 (2012)

    Article  Google Scholar 

  54. G. Caruso, P. Bisegna, D. Andreucci, L. Lenoci, V.V. Gurevich, H.E. Hamm, E. DiBenedetto, Proc. Natl. Acad. Sci. USA 108, 7804 (2011)

    ADS  Article  Google Scholar 

  55. V. Arshavsky, M. Burns, Cellular Logistics, e28680 (2014)

  56. N.J. Cook, L.L. Molday, D. Reid, U.B. Kaupp, R.S. Molday, J. Biol. Chem. 264, 6996 (1989)

    Google Scholar 

  57. K.W. Yau, D.A. Baylor, Annu. Rev. Neurosci. 12, 289 (1989)

    Article  Google Scholar 

  58. U.B. Kaupp, T. Niidome, T. Tanabe, S. Terada, W. Bönigk, W. Stühmer, N.J. Cook, K. Kangawa, H. Matsuo, T. Hirose, et al., Nature 342, 762 (1989)

    ADS  Article  Google Scholar 

  59. C. Biskup, J. Kusch, E. Schulz, V. Nache, F. Schwede, F. Lehmann, V. Hagen, K. Benndorf, Nature 446, 440 (2007)

    ADS  Article  Google Scholar 

  60. P.V. Lishko, Y. Kirichok, D. Ren, B. Navarro, J.J. Chung, D.E. Clapham, Annu. Rev. Physiol. 74, 453 (2012)

    Article  Google Scholar 

  61. P.V. Lishko, I.L. Botchkina, Y. Kirichok, Nature 471, 387 (2011)

    ADS  Article  Google Scholar 

  62. T. Strünker, N. Goodwin, C. Brenker, N.D. Kashikar, I. Weyand, R. Seifert, U.B. Kaupp, Nature 471, 382 (2011)

    ADS  Article  Google Scholar 

  63. M.R. Miller, N. Mannowetz, A.T. Iavarone, R. Safavi, E.O. Gracheva, J.F. Smith, R.Z. Hill, D.M. Bautista, Y. Kirichok, P.V. Lishko, Science 352, 555 (2016)

    ADS  Article  Google Scholar 

  64. U.B. Kaupp, R. Seifert, Annu. Rev. Physiol. 63, 235 (2001)

    Article  Google Scholar 

  65. M. Biel, C. Wahl-Schott, S. Michalakis, X. Zong, Physiological Rev. 89, 847 (2009)

    Article  Google Scholar 

  66. J.J.B. Jack, D. Noble, R.W. Tsien, Electric Current Flow in Excitable Cells, (Oxford University Press, 1983)

  67. B. Navarro, Y. Kirichok, D.E. Clapham, Proc. Natl. Acad. Sci. U.S.A. 104, 7688 (2007)

    ADS  Article  Google Scholar 

  68. V.D. Vacquier, A. Loza-Huerta, J. Garcia-Rincon, A. Darszon, C. Beltran, Biochim. Biophys. Acta. 1842, 2621 (2014)

    Article  Google Scholar 

  69. T. Nishigaki, O. Jose, A.L. Gonzalez-Cota, F. Romero, C.L. Trevino, A. Darszon, Biochem. Biophys. Res. Commun. 450, 1149 (2014)

    Article  Google Scholar 

  70. A. Darszon, T. Nishigaki, C. Beltran, C.L. Trevino, Physiological Rev. 91, 1305 (2011)

    Article  Google Scholar 

  71. T. Nishigaki, K. Chiba, W. Miki, M. Hoshi, Zygote 4, 237 (1996)

    Article  Google Scholar 

  72. M. Matsumoto, J. Solzin, A. Helbig, V. Hagen, S. Ueno, O. Kawase, Y. Maruyama, M. Ogiso, M. Godde, H. Minakata, et al., Dev. Biol. 260, 314 (2003)

    Article  Google Scholar 

  73. M. Böhmer, Q. Van, I. Weyand, V. Hagen, M. Beyermann, M. Matsumoto, M. Hoshi, E. Hildebrand, U.B. Kaupp, EMBO J. 24, 2741 (2005)

    Article  Google Scholar 

  74. S. Fechner, L. Alvarez, W. Bönigk, A. Müller, T.K. Berger, R. Pascal, C. Trötschel, A. Poetsch, G. Stölting, K.R. Siegfried, et al., eLife 4, e07624 (2015)

    Article  Google Scholar 

  75. X. Cai, D.E. Clapham, PloS one 3, e3569 (2008)

    ADS  Article  Google Scholar 

  76. V. Hagen, S. Frings, J. Bendig, D. Lorenz, B. Wiesner, U.B. Kaupp, Angew. Chem. Int. Ed. 41, 3625 (2002)

    Article  Google Scholar 

  77. V. Hagen, J. Bendig, S. Frings, T. Eckardt, S. Helm, D. Reuter, U.B. Kaupp, Angew. Chem. Int. Ed. 40, 1046 (2001)

    Article  Google Scholar 

  78. J. Elgeti, U.B. Kaupp, G. Gompper, Biophys. J. 99, 1018 (2010)

    ADS  Article  Google Scholar 

  79. J. Elgeti, G. Gompper, Eur. Phys. J. Special Topics 225, 3033 (2016)

    Article  Google Scholar 

  80. D.M. Woolley, Reprod. 126, 259 (2003)

    Article  Google Scholar 

  81. B.M. Friedrich, F. Julicher, Proc. Natl. Acad. Sci. U.S.A. 104, 13256 (2007)

    ADS  Article  Google Scholar 

  82. G.S. Fraenkel, D.L. Gunn, The Orientation of Animals: Kinesis, Taxes and Compass Reactions (Dover Publications, Inc., New York, 1961)

  83. R. Thar, T. Fenchel, Appl. Environ. Microbiol. 67, 3299 (2001)

    Article  Google Scholar 

  84. J. Riedl, M. Louis, Curr. Biol. 22, R867 (2012)

    Article  Google Scholar 

  85. S. Faumont, T.H. Lindsay, S.R. Lockery, Curr. Opin. Neurobiol. 22, 580 (2012)

    Article  Google Scholar 

  86. S.R. Lockery, Curr. Opin. Neurobiol. 21, 782 (2011)

    Article  Google Scholar 

  87. J. Bussmann, E. Raz, EMBO J. 34, 1309 (2015)

    Article  Google Scholar 

  88. H.C. Crenshaw, Helical Orientation – a Novel Mechanism for the Orientation of Microorganisms. In Lecture Notes in Biomathematics, edited by W. Alt and G. Hofmann (Berlin, Heidelberg, New York, Springer, 1990), p. 361

  89. C.J. Brokaw, J. Cell Biol. 82, 401 (1979)

    Article  Google Scholar 

  90. C.B. Lindemann, K.A. Lesich, Methods Mol. Biol. 586, 337 (2009)

    Article  Google Scholar 

  91. C.B. Lindemann, T.K. Gardner, E. Westbrook, K.S. Kanous, Cell Motil. Cytoskel. 20, 316 (1991)

    Article  Google Scholar 

  92. C.B. Lindemann, J.S. Goltz, Cell Motil. Cytoskel. 10, 420 (1988)

    Article  Google Scholar 

  93. C.D. Wood, T. Nishigaki, T. Furuta, S.A. Baba, A. Darszon, J. Cell Biol. 169, 725 (2005)

    Article  Google Scholar 

  94. Y. Kambara, K. Shiba, M. Yoshida, C. Sato, K. Kitajima, C. Shingyoji, Cell Struct. Funct. 36, 69 (2011)

    Article  Google Scholar 

  95. V. Torre, J.F. Ashmore, T.D. Lamb, A. Menini, J. Neurosci. the official J. Soc. Neurosci. 15, 7757 (1995)

    Google Scholar 

  96. K. Yoshimura, R. Kamiya, Plant Cell Physiol. 42, 665 (2001)

    Article  Google Scholar 

  97. M. Delling, P.G. DeCaen, J.F. Doerner, S. Febvay, D.E. Clapham, Nature 504, 311 (2013)

    ADS  Article  Google Scholar 

  98. P.G. DeCaen, M. Delling, T.N. Vien, D.E. Clapham, Nature 504, 315 (2013)

    ADS  Article  Google Scholar 

  99. G.J. Pazour, N. Agrin, J. Leszyk, G.B. Witman, J. Cell Biol. 170, 103 (2005)

    Article  Google Scholar 

  100. C.G. DiPetrillo, E.F. Smith, J. Cell Biol. 189, 601 (2010)

    Article  Google Scholar 

  101. C. DiPetrillo, E. Smith, Methods Cell Biol. 92, 163 (2009)

    Article  Google Scholar 

  102. S.M. King, Cytoskeleton (Hoboken) 67, 207 (2010)

    Google Scholar 

  103. H. Suzuki, T.R. Thiele, S. Faumont, M. Ezcurra, S.R. Lockery, W.R. Schafer, Nature 454, 114 (2008)

    ADS  Article  Google Scholar 

  104. G. Corkidi, B. Taboada, C.D. Wood, A. Guerrero, A. Darszon, Biochem. Biophys. Res. Commun. 373, 125 (2008)

    Article  Google Scholar 

  105. H.C. Crenshaw, Amer.Zool. 36, 608 (1996)

    Article  Google Scholar 

  106. L. Marques, A. de Almeida, Auton. Robot. 20, 183 (2006)

    Article  Google Scholar 

  107. J. Espinal, M. Aldana, A. Guerrero, C. Wood, A. Darszon, G. Martinez-Mekler, PloS one 6, e22619 (2011)

    ADS  Article  Google Scholar 

  108. J. Espinal-Enriquez, A. Darszon, A. Guerrero, G. Martinez-Mekler, PloS one 9, e104451 (2014)

    ADS  Article  Google Scholar 

  109. M.E. Burns, E.N.J. Pugh, Physiol. 25, 72 (2010)

    Article  Google Scholar 

  110. G.C. Faas, S. Raghavachari, J.E. Lisman, I. Mody, Nat. Neurosci. 14, 301 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Alvarez.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaupp, U., Alvarez, L. Sperm as microswimmers – navigation and sensing at the physical limit. Eur. Phys. J. Spec. Top. 225, 2119–2139 (2016). https://doi.org/10.1140/epjst/e2016-60097-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60097-1