The European Physical Journal Special Topics

, Volume 225, Issue 11–12, pp 2079–2097

Low Reynolds number hydrodynamics and mesoscale simulations

  • Roland G. Winkler
Review Methods and Concepts
Part of the following topical collections:
  1. Microswimmers – From Single Particle Motion to Collective Behaviour

Abstract

Hydrodynamics and hydrodynamic interactions are fundamental for the motility of microswimmers. This includes the propulsion mechanism itself, the synchronized motion of flagella in flagellar bundles and beating cilia of cilia arrays, and even extends to collective behaviors. The general importance of hydrodynamics has stimulated the development of mesoscale simulation approaches to efficiently study dynamical properties of objects embedded in a fluid. In this minireview, the properties of flows at low Reynolds numbers are discussed, thereby the unsteady acceleration term is typically taken into account (Landau-Lifshitz Navier-Stokes equations). Specifically, the synchronization of microrotors by time-dependent hydrodynamic interactions is discussed and the propulsion of a rotating helix. Moreover, the multiparticle collisions dynamics method (MPC), a mesoscale simulation approach for fluids, is outlined. Simulation results for the flow field of a model E. Coli bacterium and its swimming behavior next to a surface are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    J.M. Yeomans, D.O. Pushkin, H. Shum, Eur. Phys. J. Special Topics 223, 1771 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    D.B. Kearns, Nat. Rev. Microbiol. 8, 634 (2010)CrossRefGoogle Scholar
  5. 5.
    M. Polin, I. Tuval, K. Drescher, J.P. Gollub, R.E. Goldstein, Science 325, 487 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    R. Stocker, W.M. Durham, Science 325, 400 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    B. Afzelius, Science 193, 317 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    Q. Wang, J. Pan, W.J. Snell, Cell 125, 549 (2006)CrossRefGoogle Scholar
  9. 9.
    J.H.E. Cartwright, O. Piro, I. Tuval, Proc. Natl. Acad. Sci. USA 101, 7234 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    J. Sivinski, in Sperm Competition and the Evolution of Animal Mating Systems, edited by R.L. Smith (Academic, Orlando, 1984), p. 174Google Scholar
  12. 12.
    H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Löwen, J.M. Yeomans, Proc. Natl. Acad. Sci. USA 109, 14308 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    N.C. Darnton, L. Turner, S. Rojevsky, H.C. Berg, Biophys. J. 98, 2082 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Sleigh, The Biology of Cilia and Flagella (Pergamon Press, Oxford, 1962)Google Scholar
  15. 15.
    P.J. Hoogerbrugge, J.M. V.A. Koelman, Europhys. Lett. 19, 155 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    P. Español, Phys. Rev. E 52, 1734 (1995)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    G.R. McNamara, G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    X. He, L.-S. Luo, Phys. Rev. E 56, 6811 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, Oxford, 1994)Google Scholar
  21. 21.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    R. Kapral, Adv. Chem. Phys. 140, 89 (2008)CrossRefGoogle Scholar
  23. 23.
    G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009)Google Scholar
  24. 24.
    D. Marenduzzo, Eur. Phys. J. Special Topics 225, 2065 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959)Google Scholar
  26. 26.
    J.P. Boon, S. Yip, Molecular Hydrodynamics (Dover, New York, 1980)Google Scholar
  27. 27.
    J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986)Google Scholar
  28. 28.
    C.C. Huang, G. Gompper, R.G. Winkler, J. Chem. Phys. 138, 144902 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    J.K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996)Google Scholar
  30. 30.
    E. Lauga, Phys. Fluids 19, 061703 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    M. Theers, R.G. Winkler, Soft Matter 10, 5894 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)Google Scholar
  33. 33.
    E. Lauga, Soft Matter 7, 3060 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    B. Friedrich, Eur. Phys. J. Special Topics 225, 3053 (2016)CrossRefGoogle Scholar
  35. 35.
    C.-C. Huang, G. Gompper, R.G. Winkler, Phys. Rev. E 86, 056711 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    B.J. Alder, T.E. Wainwright, Phys. Rev. A 1, 18 (1970)ADSCrossRefGoogle Scholar
  37. 37.
    R. Zwanzig, M. Bixon, Phys. Rev. A 2, 2005 (1970)ADSCrossRefGoogle Scholar
  38. 38.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Science (Cambridge University Press, 2002)Google Scholar
  39. 39.
    S.H. Strogatz, Sync: How Order Emerges From Chaos In the Universe, Nature, and Daily Life (Hyperion, 2004)Google Scholar
  40. 40.
    P. Lenz, A. Ryskin, Phys. Biol. 3, 285 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    M. Theers, R.G. Winkler, Phys. Rev. E 88, 023012 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    R.G. Winkler, J. Chem. Phys. 127, 054904 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90, 400 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    B. Rodenborn, C.-H. Chen, H.L. Swinney, B. Liu, H.P. Zhang, Proc. Natl. Acad. Sci. USA 110, E338 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    T. Ishikawa, J. R. Soc. Interface 6, 815 (2009)CrossRefGoogle Scholar
  46. 46.
    K. Drescher, J. Dunkel, L.H. Cisneros, S. Ganguly, R.E. Goldstein, Proc. Natl. Acad. Sci. USA 108, 10940 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    J. Hu, M. Yang, G. Gompper, R.G. Winkler, Soft Matter 11, 7843 (2015)CrossRefGoogle Scholar
  48. 48.
    E. Allahyarov, G. Gompper, Phys. Rev. E 66, 036702 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    H. Noguchi, G. Gompper, Phys. Rev. E 78, 016706 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    A. Malevanets, R. Kapral, J. Chem. Phys. 112, 7260 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    R.G. Winkler, in Hierarchical Methods for Dynamics in Complex Molecular Systems, edited by J. Grotendorst, G. Sutmann, G. Gompper, D. Marx (Forschungszentrum Jülich GmbH, Jülich, 2012), Vol. 10 of IAS SeriesGoogle Scholar
  52. 52.
    C.-C. Huang, A. Chatterji, G. Sutmann, G. Gompper, R.G. Winkler, J. Comput. Phys. 229, 168 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    H. Noguchi, N. Kikuchi, G. Gompper, EPL 78, 10005 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    T. Ihle, D.M. Kroll, Phys. Rev. E 63, 020201(R) (2001)ADSCrossRefGoogle Scholar
  55. 55.
    R.G. Winkler, C.-C. Huang, J. Chem. Phys. 130, 074907 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    M. Ripoll, K. Mussawisade, R.G. Winkler, G. Gompper, Phys. Rev. E 72, 016701 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    C.-C. Huang, A. Varghese, G. Gompper, R.G. Winkler, Phys. Rev. E 91, 013310 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    A. Malevanets, J.M. Yeomans, Europhys. Lett. 52, 231 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    M. Ripoll, K. Mussawisade, R.G. Winkler, G. Gompper, Europhys. Lett. 68, 106 (2004)ADSCrossRefGoogle Scholar
  60. 60.
    S. Poblete, A. Wysocki, G. Gompper, R.G. Winkler, Phys. Rev. E 90, 033314 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)Google Scholar
  62. 62.
    S.H. Lee, R. Kapral, J. Chem. Phys. 121, 11163 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    M. Theers, E. Westphal, G. Gompper, R.G. Winkler, Phys. Rev. E 93, 032604 (2016)ADSCrossRefGoogle Scholar
  64. 64.
    A. Lamura, G. Gompper, T. Ihle, D.M. Kroll, Europhys. Lett. 56, 319 (2001)ADSCrossRefGoogle Scholar
  65. 65.
    I.O. Götze, H. Noguchi, G. Gompper, Phys. Rev. E 76, 046705 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    J.K. Whitmer, E. Luijten, J. Phys.: Condens. Matter 22, 104106 (2010)ADSGoogle Scholar
  67. 67.
    M. Yang, M. Ripoll, Soft Matter 10, 1006 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    J. Hu, A. Wysocki, R.G. Winkler, G. Gompper, Sci. Rep. 5, 9586 (2015)ADSCrossRefGoogle Scholar
  69. 69.
    H.C. Berg, E. Coli in Motion, Biological and Medical Physics Series (Springer, 2004)Google Scholar
  70. 70.
    S.Y. Reigh, R.G. Winkler, G. Gompper, Soft Matter 8, 4363 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    J. Elgeti, G. Gompper, Eur. Phys. J. Special Topics 225, 3033 (2016)CrossRefGoogle Scholar
  72. 72.
    R. Di Leonardo, D. Dell’Arciprete, L. Angelani, V. Iebba, Phys. Rev. Lett. 106, 038101 (2011)ADSCrossRefGoogle Scholar
  73. 73.
    H. Yamakawa, Helical Wormlike Chains in Polymer Solutions (Springer-Verlag, Berlin Heidelberg, 1997)Google Scholar
  74. 74.
    R. Vogel, H. Stark, Eur. Phys. J. E 33, 259 (2010)CrossRefGoogle Scholar
  75. 75.
    L. Lemelle, J.-F. Palierne, E. Chatre, C. Vaillant, C. Place, Soft Matter 9, 9759 (2013)CrossRefGoogle Scholar
  76. 76.
    E. Tüzel, G. Pan, T. Ihle, D.M. Kroll, EPL 80, 40010 (2007)CrossRefGoogle Scholar
  77. 77.
    Y.-G. Tao, I.O. Götze, G. Gompper, J. Chem. Phys. 128, 144902 (2008)ADSCrossRefGoogle Scholar
  78. 78.
    B. Kowalik, R.G. Winkler, J. Chem. Phys. 138, 104903 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • Roland G. Winkler
    • 1
  1. 1.Institute for Advanced Simulation & Institute of Complex Systems, Forschungszentrum JülichJülichGermany

Personalised recommendations