The European Physical Journal Special Topics

, Volume 225, Issue 11, pp 2301–2317

Active Brownian rods

Review Collective Behaviour

DOI: 10.1140/epjst/e2016-60062-0

Cite this article as:
Peruani, F. Eur. Phys. J. Spec. Top. (2016) 225: 2301. doi:10.1140/epjst/e2016-60062-0
Part of the following topical collections:
  1. Microswimmers – From Single Particle Motion to Collective Behaviour

Abstract

Bacteria, chemically-driven rods, and motility assays are examples of active (i.e. self-propelled) Brownian rods (ABR). The physics of ABR, despite their ubiquity in experimental systems, remains still poorly understood. Here, we review the large-scale properties of collections of ABR moving in a dissipative medium. We address the problem by presenting three different models, of decreasing complexity, which we refer to as model I, II, and III, respectively. Comparing model I, II, and III, we disentangle the role of activity and interactions. In particular, we learn that in two dimensions by ignoring steric or volume exclusion effects, large-scale nematic order seems to be possible, while steric interactions prevent the formation of orientational order at large scales. The macroscopic behavior of ABR results from the interplay between active stresses and local alignment. ABR exhibit, depending on where we locate ourselves in parameter space, a zoology of macroscopic patterns that ranges from polar and nematic bands to dynamic aggregates.

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Laboratoire J.A. Dieudonné, UMR CNRS 7351, Université Nice Sophia AntipolisNice Cedex 02France

Personalised recommendations