The European Physical Journal Special Topics

, Volume 225, Issue 11–12, pp 2301–2317

Active Brownian rods

Review Collective Behaviour
Part of the following topical collections:
  1. Microswimmers – From Single Particle Motion to Collective Behaviour

Abstract

Bacteria, chemically-driven rods, and motility assays are examples of active (i.e. self-propelled) Brownian rods (ABR). The physics of ABR, despite their ubiquity in experimental systems, remains still poorly understood. Here, we review the large-scale properties of collections of ABR moving in a dissipative medium. We address the problem by presenting three different models, of decreasing complexity, which we refer to as model I, II, and III, respectively. Comparing model I, II, and III, we disentangle the role of activity and interactions. In particular, we learn that in two dimensions by ignoring steric or volume exclusion effects, large-scale nematic order seems to be possible, while steric interactions prevent the formation of orientational order at large scales. The macroscopic behavior of ABR results from the interplay between active stresses and local alignment. ABR exhibit, depending on where we locate ourselves in parameter space, a zoology of macroscopic patterns that ranges from polar and nematic bands to dynamic aggregates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Peruani, A. Deutsch, M. Bär, Phys. Rev. E 74, 030904(R) (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Yang, V. Marceau, G. Gompper, Phys. Rev. E 82, 031904 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    A. Baskaran, M. Marchetti, Phys. Rev. Lett. 101, 268101 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    F. Peruani, J. Starruss, V. Jakovljevic, L. Sogaard-Andersen, A. Deutsch, M. Bär, Phys. Rev. Lett. 108, 098102 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    J. Starruss, F. Peruani, V. Jakovljevic, L. Sogaard-Andersen, A. Deutsch, M. Bär, Interface focus 2, 774 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Kudrolli, G. Lumay, D. Volfson, L. Tsimring, Phys. Rev. Lett. 100, 058001 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Kudrolli, Phys. Rev. Lett. 104, 088001 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    W. Paxton et al., J. Am. Chem. Soc. 126, 13424 (2004)CrossRefGoogle Scholar
  9. 9.
    N. Mano, A. Heller, J. Am. Chem. Soc. 127, 11574 (2005)CrossRefGoogle Scholar
  10. 10.
    H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Löwen, J.M. Yeomans, Proc. Natl. Acad. Sci. USA 109, 14308 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    J. Dunkel, S. Heidenreich, K. Drescher, H.H. Wensink, M. Bär, R.E. Goldstein, Phys. Rev. Lett. 110, 228102 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    H.P. Zhang, A. Be’er, E.-L. Florin, H.L. Swinney, Proc. Natl. Acad. Sci. USA 107, 13626 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    V. Schaller, C. Weber, C. Semmrich, E. Frey, A. Bausch, Nature 467, 73 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Sumino, K. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté, K. Oiwa, Nature 483, 448 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    F. Peruani, T. Klauss, A. Deutsch, A. Voss-Boehme, Phys. Rev. Lett. 106, 128101 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    F.D.C. Farrell, M.C. Marchetti, D. Marenduzzo, J. Tailleur, Phys. Rev. Lett. 108, 248101 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    R. Großmann, L. Schimansky-Geier, P. Romanczuk, New J. Phys. 14, 073033 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    S. Weitz, A. Deutsch, F. Peruani, Phys. Rev. E 92, 012322 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)ADSCrossRefGoogle Scholar
  20. 20.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, M.R. J. Prost, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    F. Ginelli, F. Peruani, M. Bär, H. Chaté, Phys. Rev. Lett. 104, 184502 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    H.H. Wensink, H. Löwen, J. Phys.: Condens. Matter 24, 464130 (2012)ADSGoogle Scholar
  24. 24.
    M. Abkenar, K. Marx, T. Auth, G. Gompper, Phys. Rev. E 88, 062314 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    S.R. McCandlish, A. Baskaran, M.F. Hagan, Soft Matter 8, 2527 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    F. Peruani, A. Deutsch, M. Bär, Eur. Phys. J. Special Topics 157, 111 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    T. Vicsek, E.A. Czirok, E.B. Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    F. Ginelli, Eur. Phys. J. Special Topics 225, 000 (2016)CrossRefGoogle Scholar
  29. 29.
    V. Berezinskii, Sov. Phys. JETP 32, 493 (1971)ADSMathSciNetGoogle Scholar
  30. 30.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C (Solid State) 6, 1181 (1973)ADSCrossRefGoogle Scholar
  31. 31.
    N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)ADSCrossRefGoogle Scholar
  32. 32.
    D. de las Heras, Y. Martinez-Raton, L. Mederos, E. Velasco, J. Mol. Liq. 185, 13 (2013)CrossRefGoogle Scholar
  33. 33.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986)Google Scholar
  34. 34.
    A.J. Levine, T. Liverpool, F. MacKintosch, Phys. Rev. E 69, 021503 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    P.A. Lebwohl, G. Lasher, Phys. Rev. A 6, 426 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    A.I. Farinas-Sánchez et al., Cond. Matter Phys. 13, 13601 (2010)CrossRefGoogle Scholar
  37. 37.
    R. Grossmann, F. Peruani, M. Bär, Phys. Rev. E 93, 040102(R) (2016)ADSCrossRefGoogle Scholar
  38. 38.
    F. Peruani, M. Bär, New J. Phys. 15, 065009 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    F. Peruani, L. Schimansky-Geier, M. Bär, Eur. Phys. J. Special Topics 191, 173 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    G. Grégoire, H. Chaté, Phys. Rev. Lett. 92, 025702 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    H. Chaté, F. Ginelli, R. Montagne, Phys. Rev. Lett. 96, 180602 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Fily, M. Marchetti, Phys. Rev. Lett. 108, 235702 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    G. Redner, M. Hagan, A. Baskaran, Phys. Rev. Lett. 110, 055701 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    T. Speck, J. Bialké, A.M. Menzel, H. Löwen, Phys. Rev. Lett. 110, 218304 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    T. Speck, Eur. Phys. J. Special Topics 225, 2287 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    D. Marenduzzo, Eur. Phys. J. Special Topics 225, 2065 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    H.-S. Kuan, R. Blackwell, M.A. Glaser, M.D. Betterton [arXiv:1407.4842] (2014)
  49. 49.
    D. Nishiguchi, K. Nagai, H. Chaté, M. Sano [arXiv:1604.04247] (2016)
  50. 50.
    R. Grossmann, F. Peruani, M. Bär, unpublished (2016)Google Scholar
  51. 51.
    A. Peshkov, I. Aranson, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 268701 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Laboratoire J.A. Dieudonné, UMR CNRS 7351, Université Nice Sophia AntipolisNice Cedex 02France

Personalised recommendations