Skip to main content
Log in

Active Brownian rods

  • Review
  • Collective Behaviour
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Bacteria, chemically-driven rods, and motility assays are examples of active (i.e. self-propelled) Brownian rods (ABR). The physics of ABR, despite their ubiquity in experimental systems, remains still poorly understood. Here, we review the large-scale properties of collections of ABR moving in a dissipative medium. We address the problem by presenting three different models, of decreasing complexity, which we refer to as model I, II, and III, respectively. Comparing model I, II, and III, we disentangle the role of activity and interactions. In particular, we learn that in two dimensions by ignoring steric or volume exclusion effects, large-scale nematic order seems to be possible, while steric interactions prevent the formation of orientational order at large scales. The macroscopic behavior of ABR results from the interplay between active stresses and local alignment. ABR exhibit, depending on where we locate ourselves in parameter space, a zoology of macroscopic patterns that ranges from polar and nematic bands to dynamic aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Peruani, A. Deutsch, M. Bär, Phys. Rev. E 74, 030904(R) (2006)

    Article  ADS  Google Scholar 

  2. Y. Yang, V. Marceau, G. Gompper, Phys. Rev. E 82, 031904 (2010)

    Article  ADS  Google Scholar 

  3. A. Baskaran, M. Marchetti, Phys. Rev. Lett. 101, 268101 (2008)

    Article  ADS  Google Scholar 

  4. F. Peruani, J. Starruss, V. Jakovljevic, L. Sogaard-Andersen, A. Deutsch, M. Bär, Phys. Rev. Lett. 108, 098102 (2012)

    Article  ADS  Google Scholar 

  5. J. Starruss, F. Peruani, V. Jakovljevic, L. Sogaard-Andersen, A. Deutsch, M. Bär, Interface focus 2, 774 (2012)

    Article  Google Scholar 

  6. A. Kudrolli, G. Lumay, D. Volfson, L. Tsimring, Phys. Rev. Lett. 100, 058001 (2008)

    Article  ADS  Google Scholar 

  7. A. Kudrolli, Phys. Rev. Lett. 104, 088001 (2010)

    Article  ADS  Google Scholar 

  8. W. Paxton et al., J. Am. Chem. Soc. 126, 13424 (2004)

    Article  Google Scholar 

  9. N. Mano, A. Heller, J. Am. Chem. Soc. 127, 11574 (2005)

    Article  Google Scholar 

  10. H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Löwen, J.M. Yeomans, Proc. Natl. Acad. Sci. USA 109, 14308 (2012)

    Article  ADS  Google Scholar 

  11. J. Dunkel, S. Heidenreich, K. Drescher, H.H. Wensink, M. Bär, R.E. Goldstein, Phys. Rev. Lett. 110, 228102 (2013)

    Article  ADS  Google Scholar 

  12. H.P. Zhang, A. Be’er, E.-L. Florin, H.L. Swinney, Proc. Natl. Acad. Sci. USA 107, 13626 (2010)

    Article  ADS  Google Scholar 

  13. V. Schaller, C. Weber, C. Semmrich, E. Frey, A. Bausch, Nature 467, 73 (2010)

    Article  ADS  Google Scholar 

  14. Y. Sumino, K. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté, K. Oiwa, Nature 483, 448 (2012)

    Article  ADS  Google Scholar 

  15. F. Peruani, T. Klauss, A. Deutsch, A. Voss-Boehme, Phys. Rev. Lett. 106, 128101 (2011)

    Article  ADS  Google Scholar 

  16. F.D.C. Farrell, M.C. Marchetti, D. Marenduzzo, J. Tailleur, Phys. Rev. Lett. 108, 248101 (2012)

    Article  ADS  Google Scholar 

  17. R. Großmann, L. Schimansky-Geier, P. Romanczuk, New J. Phys. 14, 073033 (2012)

    Article  ADS  Google Scholar 

  18. S. Weitz, A. Deutsch, F. Peruani, Phys. Rev. E 92, 012322 (2015)

    Article  ADS  Google Scholar 

  19. L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)

    Article  ADS  Google Scholar 

  20. T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    Article  ADS  Google Scholar 

  21. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, M.R. J. Prost, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  22. F. Ginelli, F. Peruani, M. Bär, H. Chaté, Phys. Rev. Lett. 104, 184502 (2010)

    Article  ADS  Google Scholar 

  23. H.H. Wensink, H. Löwen, J. Phys.: Condens. Matter 24, 464130 (2012)

    ADS  Google Scholar 

  24. M. Abkenar, K. Marx, T. Auth, G. Gompper, Phys. Rev. E 88, 062314 (2013)

    Article  ADS  Google Scholar 

  25. S.R. McCandlish, A. Baskaran, M.F. Hagan, Soft Matter 8, 2527 (2012)

    Article  ADS  Google Scholar 

  26. F. Peruani, A. Deutsch, M. Bär, Eur. Phys. J. Special Topics 157, 111 (2008)

    Article  ADS  Google Scholar 

  27. T. Vicsek, E.A. Czirok, E.B. Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Ginelli, Eur. Phys. J. Special Topics 225, 000 (2016)

    Article  Google Scholar 

  29. V. Berezinskii, Sov. Phys. JETP 32, 493 (1971)

    ADS  MathSciNet  Google Scholar 

  30. J.M. Kosterlitz, D.J. Thouless, J. Phys. C (Solid State) 6, 1181 (1973)

    Article  ADS  Google Scholar 

  31. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  32. D. de las Heras, Y. Martinez-Raton, L. Mederos, E. Velasco, J. Mol. Liq. 185, 13 (2013)

    Article  Google Scholar 

  33. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986)

  34. A.J. Levine, T. Liverpool, F. MacKintosch, Phys. Rev. E 69, 021503 (2004)

    Article  ADS  Google Scholar 

  35. P.A. Lebwohl, G. Lasher, Phys. Rev. A 6, 426 (1973)

    Article  ADS  Google Scholar 

  36. A.I. Farinas-Sánchez et al., Cond. Matter Phys. 13, 13601 (2010)

    Article  Google Scholar 

  37. R. Grossmann, F. Peruani, M. Bär, Phys. Rev. E 93, 040102(R) (2016)

    Article  ADS  Google Scholar 

  38. F. Peruani, M. Bär, New J. Phys. 15, 065009 (2013)

    Article  ADS  Google Scholar 

  39. F. Peruani, L. Schimansky-Geier, M. Bär, Eur. Phys. J. Special Topics 191, 173 (2010)

    Article  ADS  Google Scholar 

  40. G. Grégoire, H. Chaté, Phys. Rev. Lett. 92, 025702 (2004)

    Article  ADS  Google Scholar 

  41. H. Chaté, F. Ginelli, R. Montagne, Phys. Rev. Lett. 96, 180602 (2006)

    Article  ADS  Google Scholar 

  42. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)

    Article  ADS  Google Scholar 

  43. Y. Fily, M. Marchetti, Phys. Rev. Lett. 108, 235702 (2012)

    Article  ADS  Google Scholar 

  44. G. Redner, M. Hagan, A. Baskaran, Phys. Rev. Lett. 110, 055701 (2013)

    Article  ADS  Google Scholar 

  45. T. Speck, J. Bialké, A.M. Menzel, H. Löwen, Phys. Rev. Lett. 110, 218304 (2014)

    Article  ADS  Google Scholar 

  46. T. Speck, Eur. Phys. J. Special Topics 225, 2287 (2016)

    Article  ADS  Google Scholar 

  47. D. Marenduzzo, Eur. Phys. J. Special Topics 225, 2065 (2016)

    Article  ADS  Google Scholar 

  48. H.-S. Kuan, R. Blackwell, M.A. Glaser, M.D. Betterton [arXiv:1407.4842] (2014)

  49. D. Nishiguchi, K. Nagai, H. Chaté, M. Sano [arXiv:1604.04247] (2016)

  50. R. Grossmann, F. Peruani, M. Bär, unpublished (2016)

  51. A. Peshkov, I. Aranson, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 268701 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Peruani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peruani, F. Active Brownian rods. Eur. Phys. J. Spec. Top. 225, 2301–2317 (2016). https://doi.org/10.1140/epjst/e2016-60062-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60062-0

Navigation