The European Physical Journal Special Topics

, Volume 225, Issue 13–14, pp 2487–2506 | Cite as

Unraveling the primary mechanisms leading to synchronization response in dissimilar oscillators

  • Gonzalo Marcelo Ramírez-Ávila
  • Jürgen Kurths
Review Review articles
Part of the following topical collections:
  1. Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental Approaches

Abstract

We study how the phenomenon of response to synchronization arises in sets of pulse-coupled dissimilar oscillators. One of the sets is constituted by oscillators that can easily synchronize. Conversely, the oscillators of the other set do not synchronize. When the elements of the first set are not synchronized, they induce oscillation death in the constituents of the second set. By contrast, when synchronization is achieved in oscillators of the first set, those of the second set recover their oscillatory behavior and thus, responding to synchronization. Additionally, we found another interesting phenomenon in this type of systems, namely, a new control of simultaneous firings in a population of similar oscillators attained by means of the action of a dissimilar oscillator.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Blekhman, Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications (World Scientific, Singapore, 2000)Google Scholar
  2. 2.
    I.I. Blekhman, Synchronization in Science and Technology (ASME Press, New York, 1988)Google Scholar
  3. 3.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: a Universal Concept in Nonlinear Sciences (Cambridge University Press, New York, 2001)Google Scholar
  4. 4.
    S. Boccaletti, L.M. Pecora, A. Pelaez, Phys. Rev. E 63, 066219 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    H. Nijmeije, A. Rodriguez-Angeles, Synchronization of Mechanical Systems (World Scientific, Singapore, 2003)Google Scholar
  6. 6.
    A. Stefanski, Determining Thresholds of Complete Synchronization, and Application (World Scientific, 2009)Google Scholar
  7. 7.
    H. Fukuda, H. Morimura, S. Kai, Physica D 205, 80 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M. Lara-Aparicio, C. Barriga-Montoya, P. Padilla-Longoria, B. Fuentes-Pardo, Math. Biosci. Eng. 11, 317 (2014)MathSciNetGoogle Scholar
  9. 9.
    J. Gonzalez-Miranda, Synchronization And Control Of Chaos: An Introduction For Scientists And Engineers (Imperial College Press, London, 2004)Google Scholar
  10. 10.
    X.B. Lu, B.Z. Qin, Synchronization in Complex Networks (Nova Science, New York, 2011)Google Scholar
  11. 11.
    A.E. Motter, S.A. Myers, M. Anghel, T. Nishikawa, Nat. Phys. 9, 191 (2013)CrossRefGoogle Scholar
  12. 12.
    G. Grinstein, R. Linsker, P. Natl. Acad. Sci. USA 102, 9948 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    W. Zhou, J. Yang, L. Zhou, D. Tong, Stability and Synchronization Control of Stochastic Neural Networks (Springer, Berlin, 2016)Google Scholar
  14. 14.
    L. Kocarev, Consensus and Synchronization in Complex Networks (Springer, Berlin, 2013)Google Scholar
  15. 15.
    R. Bader, Nonlinearities and Synchronization in Musical Acoustics and Music Psychology (Springer, Heidelberg, 2013)Google Scholar
  16. 16.
    S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S.C. Manrubia, A.S. Mikhailov, D.H. Zanette, Emergence of Dynamical Order (World Scientific, Singapore, 2004)Google Scholar
  18. 18.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From Simple to Complex (Springer, Berlin, 2007)Google Scholar
  20. 20.
    S. Boccaletti, The Synchronized Dynamics of Complex Systems (Elsevier, New York, 2008)Google Scholar
  21. 21.
    J.A. Acebron, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    F.A. Rodrigues, T.K.D.M. Peron, P. Ji, J. Kurths, Phys. Rep. 610, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Y. Kuramoto, Physica D 50, 15 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    S. Bottani, Phys. Rev. E 54, 2334 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    G.M. Ramírez Ávila, J. Kurths, J.L. Guisset, J.L. Deneubourg, Eur. Phys. J. Special Topics 223, 2759 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167 (2014)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    W. Zou, D.V. Senthilkumar, J. Duan, J. Kurths, Phys. Rev. E 90, 032906 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    F.M. Atay, Physica D 183, 1 (2003)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    T. Banerjee, D. Biswas, Chaos 23, 043101 (2013)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Koseska, E. Volkov, J. Kurths, Chaos 20, 023132 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    A. Koseska, E. Volkov, J. Kurths, Phys. Rep. 531, 173 (2013)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Koseska, E. Volkov, J. Kurths, Phys. Rev. Lett. 111, 024103 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    J. Buck, E. Buck, Science 159, 1319 (1968)ADSCrossRefGoogle Scholar
  34. 34.
    J. Copeland, A. Moiseff, J. Insect Physiol. 43, 965 (1997)CrossRefGoogle Scholar
  35. 35.
    A. Moiseff, J. Copeland, J. Insect Behav. 13, 597 (2000)CrossRefGoogle Scholar
  36. 36.
    N. Ohba, Integr. Comp. Biol. 44, 225 (2004)CrossRefGoogle Scholar
  37. 37.
    A.T. Winfree, J. Theor. Biol. 16, 15 (1967)CrossRefGoogle Scholar
  38. 38.
    R.E. Mirollo, S.H. Strogatz, SIAM J. Appl. Math. 50, 1645 (1990)MathSciNetCrossRefGoogle Scholar
  39. 39.
    G.M. Ramírez Ávila, J.L. Guisset, J.L. Deneubourg, Physica D 182, 254 (2003)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Buck, J.F. Case, Biol. Bull. 121, 234 (1961)CrossRefGoogle Scholar
  41. 41.
    A. Moiseff, J. Copeland, Science 329, 181 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    G.M. Ramírez Ávila, J.L. Deneubourg, J.L. Guisset, N. Wessel, J. Kurths, Europhys. Lett. 94, 60007 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    T. Buschmann, A. Ewald, A. von Twickel, A. Bschges, Bioinspir. Biomim. 10, 041001 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    B.V.C. Martins, G. Brunetto, F. Sato, V.R. Coluci, D.S. Galvão, Chem. Phys. Lett. 453, 290 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    J. Buck, E. Buck, Am. Nat. 112, 471 (1978)CrossRefGoogle Scholar
  46. 46.
    W. Woods Jr, H. Hendrickson, J. Mason, S. Lewis, Am. Nat. 170, 702 (2007)CrossRefGoogle Scholar
  47. 47.
    E. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (MIT Press, Cambridge, 2007)Google Scholar
  48. 48.
    P. Schultz, T. Peron, D. Eroglu, T. Stemler, G.M. Ramírez Ávila, F.A. Rodrigues, J. Kurths, Phys. Rev. E 93, 062211 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • Gonzalo Marcelo Ramírez-Ávila
    • 1
  • Jürgen Kurths
    • 2
    • 3
    • 4
    • 5
  1. 1.Instituto de Investigaciones Físicas, Casilla 8635 Universidad Mayor de San AndrésLa PazBolivia
  2. 2.Institut für Physik, Humboldt-Universität zu BerlinBerlinGermany
  3. 3.Potsdam Institut für KlimafolgenforschungPotsdamGermany
  4. 4.Institute for Complex Systems and Mathematical Biology, University of AberdeenAberdeen AB24 3FXUK
  5. 5.Department of Control TheoryNizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations