The European Physical Journal Special Topics

, Volume 225, Issue 13–14, pp 2507–2532 | Cite as

Multidimensional solitons: Well-established results and novel findings

Review Review articles
Part of the following topical collections:
  1. Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental Approaches

Abstract

A brief review is given of some well-known and some very recent results obtained in studies of two- and three-dimensional (2D and 3D) solitons. Both zero-vorticity (fundamental) solitons and ones carrying vorticity S = 1 are considered. Physical realizations of multidimensional solitons in atomic Bose-Einstein condensates (BECs) and nonlinear optics are briefly discussed too. Unlike 1D solitons, which are typically stable, 2D and 3D ones are vulnerable to instabilities induced by the occurrence of the critical and supercritical collapse, respectively, in the same 2D and 3D models that give rise to the solitons. Vortex solitons are subject to a still stronger splitting instability. For this reason, a central problem is looking for physical settings in which 2D and 3D solitons may be stabilized. The review specifically addresses one well-established topic, viz., the stabilization of the 3D and 2D states, with S = 0 and 1, trapped in harmonic-oscillator (HO) potentials, and another topic which was developed very recently: the stabilization of 2D and 3D free-space solitons, which mix components with S = 0 and ± 1 (semi-vortices and mixed modes), in a binary system with the (pseudo-) spin-orbit coupling (SOC) between its components. The former model is based on the single cubic nonlinear Schrödinger/Gross-Pitaevskii equation (NLSE/GPE), while the latter one is represented by a system of two coupled GPEs. In both cases, the generic situations are drastically different in the 2D and 3D geometries. In the 2D settings, the stabilization mechanism creates a stable ground state (GS, which was absent without it), whose norm falls below the threshold value at which the critical collapse sets in. In the 3D geometry, the supercritical collapse does not allow to create a GS, but metastable solitons can be constructed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. S. Kivshar, D.E. Pelinovsky, Phys. Rep. 331, 117 (2000)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    B.A. Malomed, D. Mihalache, F. Wise, L. Torner, J. Optics B: Quant. Semicl. Opt. 7, R53 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A.S. Desyatnikov, L. Torner, Y.S. Kivshar, Progr. Opt. 47, 1 (2005)CrossRefGoogle Scholar
  4. 4.
    D. Mihalache, Rom. J. Phys. 57, 352 (2012)Google Scholar
  5. 5.
    Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003)Google Scholar
  6. 6.
    Y.V. Kartashov, B.A. Malomed, L. Torner, Rev. Mod. Phys. 83, 247 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    N.R. Cooper, Phys. Rev. Lett. 82, 1554 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    E. Babaev, Phys. Rev. Lett. 88, 177002 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    N. Kumada, A. Sawada, Z.F. Ezawa, S. Nagahama, H. Azuhata, K. Muraki, T. Saku, Y. Hirayama, J. Phys. Soc. Jpn 69, 3178 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    W. Munzer, A. Neubauer, T. Adams, S. Muhlbauer, C. Franz, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, C. Pfleiderer, Phys. Rev. B 81, 041203 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    R. Alkofer, H. Reinhardt, H. Weigel, Phys. Rep. 265, 139 (1996)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    H. Aratyn, L.A. Ferreira, A.H. Zimerman, Phys. Rev. Lett. 83, 1723 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    P. Sutcliffe, Proc. R. Soc. A 463, 3001 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    B. Kleihaus, J. Kunz, Y. Shnir, Phys. Rev. D 68, 101701 (2003)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Kunz, U. Neemann, Y. Shnir, Phys. Lett. B 640, 57 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    E. Radu, M.S. Volkov, Phys. Rep. 468, 101 (2008)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Hosaka, H. Toki, Phys. Rep. 227, 65 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Silberberg, Opt. Lett. 15, 1282 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    R. McLeod, K. Wagner, S. Blair, Phys. Rev. A 52, 3254 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    A.D. Martin, J. Ruostekoski, New J. Phys. 14, 043040 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J. Cuevas, P.G. Kevrekidis, B.A. Malomed, P. Dyke, R.G. Hulet, New J. Phys. 15, 063006 (2013)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J.H.V. Nguyen, P. Dyke, D. Luo, B.A. Malomed, R.G. Hulet, Nat. Phys. 10, 918 (2014)CrossRefGoogle Scholar
  25. 25.
    G.D. McDonald, C.C.N. Kuhn, K.S. Hardman, S. Bennetts, P.J. Everitt, P.A. Altin, J.E. Debs, J.D. Close, N.P. Robins, Phys. Rev. Lett. 113, 013002 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    H. Sakaguchi, B.A. Malomed, New J. Phys. 18, 025020 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, UK, 2006)Google Scholar
  28. 28.
    L. Bergé, Phys. Rep. 303, 259 (1998)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    C. Sulem, P.L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave collapse (Springer, Berlin, 1999)Google Scholar
  30. 30.
    E.A. Kuznetsov, F. Dias, Phys. Rep. 507, 43 (2011)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    G. Fibich, The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse (Springer, Heidelberg, 2015)Google Scholar
  32. 32.
    R.Y. Chiao, E. Garmire, C.H. Townes, Phys. Rev. Lett. 13, 479 (1964)ADSCrossRefGoogle Scholar
  33. 33.
    N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)ADSCrossRefGoogle Scholar
  34. 34.
    V.I. Kruglov, Yu.A. Logvin, V.M. Volkov, J. Mod. Opt. 39, 2277 (1992)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    F. Dalfovo, S. Stringari, Phys. Rev. A 53, 2477 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    R.J. Dodd, J. Res. Natl. Inst. Stand. Technol. 101, 545 (1996)CrossRefGoogle Scholar
  37. 37.
    T.J. Alexander, L. Bergé, Phys. Rev. E 65, 026611 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    L.D. Carr, C.W. Clark, Phys. Rev. Lett. 97, 010403 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    S.K. Adhikari, Phys. Rev. E 65, 016703 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    H. Saito, M. Ueda, Phys. Rev. Lett. 89, 190402 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    D. Mihalache, D. Mazilu, B.A. Malomed, F. Lederer, Phys. Rev. A 73, 043615 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    B.A. Malomed, F. Lederer, D. Mazilu, D. Mihalache, Phys. Lett. A 361, 336 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    H. Sakaguchi, B. Li, B.A. Malomed, Phys. Rev. E 89, 032920 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    Y.-C. Zhang, Z.-W. Zhou, B.A. Malomed, H. Pu, Phys. Rev. Lett. 115, 253902 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003)Google Scholar
  46. 46.
    H.T.C. Stoof, K.B. Gubbels, D.B.M. Dickerheid, Ultracold Quantum Fields (Springer, Dordrecht, 2009)Google Scholar
  47. 47.
    B.B. Baizakov, B.A. Malomed, M. Salerno, Phys. Rev. A 70, 053613 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    D. Mihalache, D. Mazilu, F. Lederer, Y.V. Kartashov, L.-C. Crasovan, L. Torner, Phys. Rev. E 70, 055603(R) (2004)ADSCrossRefGoogle Scholar
  49. 49.
    H. Leblond, B.A. Malomed, D. Mihalache, Phys. Rev. E 76, 026604 (2007)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    L. Chomaz, L. Corman, T. Bienaime, R. Desbuquois, C. Weitenberg, S. Nascimbène, J. Beugnon, J. Dalibard, Nat. Commun. 6, 6162 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Nature 417, 150 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L.D. Carr, Y. Castin, C. Salomon, Science 269, 1290 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, New J. Phys. 5, 73 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    N.K. Efremidis, S. Sears, D.N. Christodoulides, J.W. Fleischer, M. Segev, Phys. Rev. E 66, 046602 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    B.B. Baizakov, B.A. Malomed, M. Salerno, Europhys. Lett. 63, 642 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    J. Yang, Z.H. Musslimani, Opt. Lett. 28, 2094 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    D. Neshev, T.J. Alexander, E.A. Ostrovskaya, Y.S. Kivshar, H. Martin, I. Makasyuk, Z. Chen, Phys. Rev. Lett. 92, 123903 (2004)ADSCrossRefGoogle Scholar
  58. 58.
    J.W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, D.N. Christodoulides, Phys. Rev. Lett. 92, 123904 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    E.A. Cerda-Méndez, D. Sarkar, D.N. Krizhanovskii, S.S. Gavrilov, K. Biermann, M.S. Skolnick, P.V. Santos, Phys. Rev. Lett. 111, 146401 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    B.A. Malomed, Progr. Optics 43, 71 (2002)CrossRefGoogle Scholar
  61. 61.
    N.G. Vakhitov, A.A. Kolokolov, Radiophys. Quant. Electron. 16, 783 (1973)ADSCrossRefGoogle Scholar
  62. 62.
    L. Salasnich, B.A. Malomed, F. Toigo, Phys. Rev. A 76, 063614 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    A.L. Marchant, T.P. Billam, T.P. Wiles, M.M.H. Yu, S.A. Gardiner, S.L. Cornish, Nat. Commun. 4, 1865 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    J. Everitt, M.A. Sooriyabandara, G.D. McDonald, K.S. Hardman, C. Quinlivan, P. Manju, P. Wigley, J.E. Debs, J.D. Close, C.C.N. Kuhn, N.P. Robins [arXiv:http://arxiv.org/abs/1509.06844]
  65. 65.
    S.L. Cornish, S.T. Thompson, C.E. Wieman, Phys. Rev. Lett. 96, 170401 (2006)ADSCrossRefGoogle Scholar
  66. 66.
    R. Driben, V.V. Konotop, T. Meier, Sci. Rep. 6, 22758 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    R. Driben, V.V. Konotop, B.A. Malomed, T. Meier, Phys. Rev. E 94, 012207 (2016)ADSCrossRefGoogle Scholar
  68. 68.
    M. Desaix, D. Anderson, M. Lisak, J. Opt. Soc. Am. B 8, 2082 (1991)ADSCrossRefGoogle Scholar
  69. 69.
    M. Brtka, A. Gammal, B.A. Malomed, Phys. Rev. A 82, 053610 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    P. Hauke, F.M. Cucchietti, L. Tagliacozzo, I. Deutsch, M. Lewenstein, Rep. Prog. Phys. 75, 082401 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    T.H. Johnson, S.R. Clark, D. Jaksch, EPJ Quantum Technology 1, 10 (2014)CrossRefGoogle Scholar
  72. 72.
    E. Zohar, J.I. Cirac, B. Reznik, Rep. Prog. Phys. 79, 014401 (2016)ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955)ADSCrossRefGoogle Scholar
  74. 74.
    Y.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984)ADSCrossRefGoogle Scholar
  75. 75.
    D.L. Campbell, G. Juzeliūnas, I.B. Spielman, Phys. Rev. A 84, 025602 (2011)ADSCrossRefGoogle Scholar
  76. 76.
    Y.J. Lin, K. Jimenez-Garcia, I.B. Spielman, Nature 471, 83 (2011)ADSCrossRefGoogle Scholar
  77. 77.
    J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S. Pan, B. Zhao, Y.J. Deng, H. Zhai, S. Chen, J.-W. Pan, Phys. Rev. Lett. 109, 115301 (2012)ADSCrossRefGoogle Scholar
  78. 78.
    C. Hamner, C. Qu, Y. Zhang, J. Chang, M. Gong, C. Zhang, P. Engels, Nat. Commun. 5, 4023 (2014)ADSCrossRefGoogle Scholar
  79. 79.
    A.J. Olson, S.-J. Wang, R.J. Niffenegger, C.-H. Li, C.H. Greene, Y.P. Chen, Phys. Rev. A 90, 013616 (2014)ADSCrossRefGoogle Scholar
  80. 80.
    Y. Zhang, L. Mao, C. Zhang, Phys. Rev. Lett. 108, 035302 (2012)ADSCrossRefGoogle Scholar
  81. 81.
    Y. Li, L.P. Pitaevskii, S. Stringari, Phys. Rev. Lett. 108, 225301 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    Y. Zhang, G. Chen, C. Zhang, Sci. Rep. 3, 1937 (2013)ADSGoogle Scholar
  83. 83.
    D.A. Zezyulin, R. Driben, V.V. Konotop, B.A. Malomed, Phys. Rev. A 88, 013607 (2013)ADSCrossRefGoogle Scholar
  84. 84.
    Y.-C. Zhang, Sh.-W. Song, W.-M. Liu, Sci. Rep. 4, 4992 (2014)ADSGoogle Scholar
  85. 85.
    V. Achilleos, D.J. Frantzeskakis, P.G. Kevrekidis, D.E. Pelinovsky, Phys. Rev. Lett. 110, 264101 (2013)ADSCrossRefGoogle Scholar
  86. 86.
    Y.V. Kartashov, V.V. Konotop, F.Kh. Abdullaev, Phys. Rev. Lett. 111, 060402 (2013)ADSCrossRefGoogle Scholar
  87. 87.
    Y. Xu, Y. Zhang, B. Wu, Phys. Rev. A 87, 013614 (2013)ADSCrossRefGoogle Scholar
  88. 88.
    L. Salasnich, B.A. Malomed, Phys. Rev. A 87, 063625 (2013)ADSCrossRefGoogle Scholar
  89. 89.
    Y.V. Kartashov, V.V. Konotop, D.A. Zezyulin, Phys. Rev. A 90, 063621 (2014)ADSCrossRefGoogle Scholar
  90. 90.
    V.E. Lobanov, Y.V. Kartashov, V.V. Konotop, Phys. Rev. Lett. 112, 180403 (2014)ADSCrossRefGoogle Scholar
  91. 91.
    S. Sinha, R. Nath, L. Santos, Phys. Rev. Lett. 107, 270401 (2011)CrossRefGoogle Scholar
  92. 92.
    C.J. Wu, I. Mondragon-Shem, X.-F. Zhou, Chin. Phys. Lett. 28, 097102 (2011)ADSCrossRefGoogle Scholar
  93. 93.
    Y. Deng, J. Cheng, H. Jing, C.P. Sun, S. Yi, Phys. Rev. Lett. 108, 125301 (2012)ADSCrossRefGoogle Scholar
  94. 94.
    T. Kawakami, T. Mizushima, K. Machida, Phys. Rev. A 84, 011607 (2011)ADSCrossRefGoogle Scholar
  95. 95.
    B. Ramachandhran, B. Opanchuk, X.-J. Liu, H. Pu, P.D. Drummond, H. Hu, Phys. Rev. A 85, 023606 (2012)ADSCrossRefGoogle Scholar
  96. 96.
    G.J. Conduit, Phys. Rev. A 86, 021605(R) (2012)ADSCrossRefGoogle Scholar
  97. 97.
    E. Ruokokoski, J.A.M. Huhtamaki, M. Mottonen, Phys. Rev. A 86, 051607 (2012)ADSCrossRefGoogle Scholar
  98. 98.
    H. Sakaguchi, B. Li, Phys. Rev. A 87, 015602 (2013)ADSCrossRefGoogle Scholar
  99. 99.
    A. Fetter, Phys. Rev. A 89, 023629 (2014)ADSCrossRefGoogle Scholar
  100. 100.
    A. Fetter, J. Low Temp. Phys. 180, 37 (2015)ADSCrossRefGoogle Scholar
  101. 101.
    L. Salasnich, W.B. Cardoso, B.A. Malomed, Phys. Rev. A 90, 033629 (2014)ADSCrossRefGoogle Scholar
  102. 102.
    H. Sakaguchi, B.A. Malomed, Phys. Rev. E 90, 062922 (2014)ADSCrossRefGoogle Scholar
  103. 103.
    J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011)ADSCrossRefGoogle Scholar
  104. 104.
    H. Zhai, Int. J. Mod. Phys. B 26, 1230001 (2012)ADSCrossRefGoogle Scholar
  105. 105.
    I.B. Spielman, Ann. Rev. Cold At. Mol. 1, 145 (2012)Google Scholar
  106. 106.
    V. Galitski, I.B. Spielman, Nature 494, 49 (2013)ADSCrossRefGoogle Scholar
  107. 107.
    X. Zhou, Y. Li, Z. Cai, C. Wu, J. Phys. B: At. Mol. Opt. Phys. 46, 134001 (2013)ADSCrossRefGoogle Scholar
  108. 108.
    N. Goldman, G. Juzeliūnas, P. Öhberg, I.B. Spielman, Rep. Progr. Phys. 77, 126401 (2014)ADSCrossRefGoogle Scholar
  109. 109.
    H. Sakaguchi, E.Ya. Sherman, B.A. Malomed, Vortex solitons under the Rashba Dresselhaus coupling and Zeeman splitting, Phys. Rev. E (in press)Google Scholar
  110. 110.
    B.D. Esry, C.H. Greene, J.P. Burke, Jr., J.L. Bohn, Phys. Rev. Lett. 78, 3594 (1997)ADSCrossRefGoogle Scholar
  111. 111.
    D.L. Feder, M.S. Pindzola, L.A. Collins, B.I. Schneider, C.W. Clark, Phys. Rev. A 62, 053606 (2000)ADSCrossRefGoogle Scholar
  112. 112.
    M. L. Chiofalo, S. Succi, M.P. Tosi, Phys. Rev. E 62, 7438 (2000)ADSCrossRefGoogle Scholar
  113. 113.
    W. Bao, Q. Du, SIAM J. Sci. Comput. 25, 1674 (2004)MathSciNetCrossRefGoogle Scholar
  114. 114.
    Y.V. Kartashov, B.A. Malomed, V.V. Konotop, V.E. Lobanov, L. Torner, Opt. Lett. 40, 1045 (2015)ADSCrossRefGoogle Scholar
  115. 115.
    X. Jiang, Z. Fan, Z. Chen, W. Pang, Y. Li, B.A. Malomed, Phys. Rev. A 93, 023633 (2016)ADSCrossRefGoogle Scholar
  116. 116.
    H. Saito, R.G. Hulet, M. Ueda, Phys. Rev. A 76, 053619 (2007)ADSCrossRefGoogle Scholar
  117. 117.
    H. Susanto, P.G. Kevrekidis, B.A. Malomed, F.Kh. Abdullaev, Phys. Lett. A 372, 1631 (2008)ADSMathSciNetCrossRefGoogle Scholar
  118. 118.
    J. Qin, G. Dong, B.A. Malomed, Phys. Rev. Lett. 115, 023901 (2015)ADSCrossRefGoogle Scholar
  119. 119.
    O.V. Borovkova, Y.V. Kartashov, B.A. Malomed, L. Torner, Opt. Lett. 36, 3088 (2011)ADSCrossRefGoogle Scholar
  120. 120.
    O.V. Borovkova, Y.V. Kartashov, L. Torner, B.A. Malomed, Phys. Rev. E 84, 035602 (R) (2011)ADSCrossRefGoogle Scholar
  121. 121.
    Q. Tian, L. Wu, Y. Zhang, J.-F. Zhang, Phys. Rev. E 85, 056603 (2012)ADSCrossRefGoogle Scholar
  122. 122.
    Y. Wu, Q. Xie, H. Zhong, L. Wen, W. Hai, Phys. Rev. A 87, 055801 (2013)ADSCrossRefGoogle Scholar
  123. 123.
    R. Driben, Y.V. Kartashov, B.A. Malomed, T. Meier, L. Torner, Phys. Rev. Lett. 112, 020404 (2014)ADSCrossRefGoogle Scholar
  124. 124.
    R. Driben, Y. Kartashov, B.A. Malomed, T. Meier, L. Torner, New J. Phys. 16, 063035 (2014)ADSMathSciNetCrossRefGoogle Scholar
  125. 125.
    R. Driben, N. Dror, B. Malomed, T. Meier, New J. Phys. 17, 083043 (2015)CrossRefGoogle Scholar
  126. 126.
    R. Driben, T. Meier, B.A. Malomed, Sci. Rep. 5, 9420 (2015)ADSCrossRefGoogle Scholar
  127. 127.
    N. Dror, B.A. Malomed, J. Optics 16, 014003 (2016)ADSCrossRefGoogle Scholar
  128. 128.
    Y.V. Kartashov, B.A. Malomed, Y. Shnir, L. Torner, Phys. Rev. Lett. 113, 264101 (2014)ADSCrossRefGoogle Scholar
  129. 129.
    Y.M. Bidasyuk, A.V. Chumachenko, O.O. Prikhodko, S.I. Vilchinskii, M. Weyrauch, A.I. Yakimenko, Phys. Rev. A 92, 053603 (2015)ADSCrossRefGoogle Scholar
  130. 130.
    J. Ruostekoski, J.R. Anglin, Phys. Rev. Lett. 86, 3934 (2001)ADSCrossRefGoogle Scholar
  131. 131.
    R.A. Battye, N.R. Cooper, P.M. Sutcliffe, Phys. Rev. Lett. 88, 080401 (2002)ADSCrossRefGoogle Scholar
  132. 132.
    C.M. Savage, J. Ruostekoski, Phys. Rev. Lett. 91, 010403 (2003)ADSCrossRefGoogle Scholar
  133. 133.
    J. Ruostekoski, J.R. Anglin, Phys. Rev. Lett. 91, 190402 (2003)ADSCrossRefGoogle Scholar
  134. 134.
    L.S. Leslie, A. Hansen, K.C. Wright, B.M. Deutsch, N.P. Bigelow, Phys. Rev. Lett. 103, 250401 (2009)ADSCrossRefGoogle Scholar
  135. 135.
    J.Y. Choi, W.J. Kwon, Y.I. Shin, Phys. Rev. Lett. 108, 035301 (2012)ADSCrossRefGoogle Scholar
  136. 136.
    M.W. Ray, E. Ruokokoski, S. Kandel, M. Möttönen, D.S. Hall, Nature 505, 657 (2014)ADSCrossRefGoogle Scholar
  137. 137.
    E.L. Falcao-Filho, C.B. de Araújo, G. Boudebs, H. Leblond, V. Skarka, Phys. Rev. Lett. 110, 013901 (2013)ADSCrossRefGoogle Scholar
  138. 138.
    A.S. Reyna, K.C. Jorge, C.B. de Araújo, Phys. Rev. A 90, 063835 (2014)ADSCrossRefGoogle Scholar
  139. 139.
    A.S. Reyna, G. Boudebs, B.A. Malomed, C.B. de Araújo, Phys. Rev. A 93, 013840 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Department of Physical ElectronicsSchool of Electrical Engineering, Faculty of Engineering, Tel Aviv UniversityTel AvivIsrael
  2. 2.Laboratory of Nonlinear-Optical Informatics, ITMO UniversitySt. PetersburgRussia

Personalised recommendations