The European Physical Journal Special Topics

, Volume 225, Issue 8–9, pp 1663–1671 | Cite as

Understanding the stiffness of macromolecules: From linear chains to bottle-brushes

Review Specific Models to Tackle Fundamental Questions
Part of the following topical collections:
  1. Modern Simulation Approaches in Soft Matter Science: From Fundamental Understanding to Industrial Applications

Abstract

The intrinsic local stiffness of a polymer is characterized by its persistence length. However, its traditional definition in terms of the exponential decay of bond orientational correlations along the chain backbone is accurate only for Gaussian phantom-chain-like polymers. Also care is needed to clarify the conditions when the Kratky-Porod wormlike chain model is applicable. These problems are elucidated by Monte Carlo simulations of simple lattice models for polymers in both d = 2 and d = 3 dimensions. While the asymptotic decay of the bond orientational correlations for real polymers always is of power law form, the Kratky-Porod model is found to be applicable for rather stiff (but not too long) thin polymers in d = 3 (but not in d = 2). However, it does not describe thick chains, e.g., bottle-brush polymers, where stiffness is due to grafted flexible side-chains, and the persistence length grows proportional to the effective thickness of the bottle-brush. A scaling description of bottle-brushes is validated by simulations using the bond fluctuation model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, 1969)Google Scholar
  2. 2.
    A.Yu. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, New York, 1994)Google Scholar
  3. 3.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford, 2003)Google Scholar
  4. 4.
    A.M. Donald, A.H. Windle, S. Hanna, Liquid Crystalline Polymers (Cambridge, University Press, Cambridge, 2006)Google Scholar
  5. 5.
    D.A.D. Parry, E.N. Baker, Rep. Progr. Phys. 47, 1133 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    M.J. Stevens, K. Kremer, Phys. Rev. Lett. 71, 2228 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Stevens, K. Kremer, Macromolecules 26, 4917 (1993)CrossRefGoogle Scholar
  8. 8.
    B. Dünweg, M.J. Stevens, K. Kremer, in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by K. Binder, 1st edn. (Oxford Univ. Press, New York, 1995), p. 125Google Scholar
  9. 9.
    M.J. Stevens, K. Kremer, J. Chem. Phys. 103, 1669 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    U. Micka, K. Kremer, Phys. Rev. E 54, 2653 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    M.J. Stevens, K. Kremer, J. Phys. II (France) 6, 1607 (1996)CrossRefGoogle Scholar
  12. 12.
    U. Micka, K. Kremer, J. Phys.: Condens. Matter 8, 9463 (1996)ADSGoogle Scholar
  13. 13.
    U. Micka, K. Kremer, Europhys. Lett. 38, 279 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    O. Kratky, G. Porod, Recl. Trav. Chim. 68, 1106 (1949)CrossRefGoogle Scholar
  15. 15.
    H.-P. Hsu, W. Paul, K. Binder, EPL 92, 28003 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    H.-P. Hsu, W. Paul, K. Binder, EPL 95, 68004 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    H.-P. Hsu, K. Binder, J. Chem. Phys. 136, 024901 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    H.-P. Hsu, W. Paul, K. Binder, Macromolecules 43, 3094 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    D.W. Schaefer, J.F. Joanny, P. Pincus, Macromolecules 13, 1280 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    J. Moon, H. Nakanishi, Phys. Rev. A 44, 6427 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    H.-P. Hsu, W. Paul, K. Binder, Polymer Science, Ser. C 55, 39 (2013)Google Scholar
  22. 22.
    H.-P. Hsu, W. Paul, K. Binder, Macromol. Theory Simul. 20, 510 (2011)CrossRefGoogle Scholar
  23. 23.
    H.-P. Hsu, P. Grassberger, J. Stat. Phys. 144, 597 (2011)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    L. Schäfer, A. Ostendorf, J. Hager, J. Phys A: Math. Gen. 32, 7875 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    J.C. LeGuillou, J. Zinn-Justin, Phys. Rev. B 21, 3976 (1980)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    J.P. Wittmer, P. Beckrich, H. Meyer, A. Cavallo, A. Johner, J. Baschnagel, Phys. Rev. E 76, 011803 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    D. Shirvanyants, S. Panyukov, Q. Liao, M. Rubinstein, Macromolecules 41, 1475 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    W. Paul, K. Binder, D.W. Heermann, K. Kremer, J. Phys. II (France) 1, 37 (1991)CrossRefGoogle Scholar
  29. 29.
    A. Huang, H.-P. Hsu, A. Bhattacharya, K. Binder, J. Chem. Phys. 143, 243102 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    T. Norisuye, H. Fujita, Polymer J. 14, 143 (1982)CrossRefGoogle Scholar
  31. 31.
    M. Zhang, A.H.E. Müller, J. Polym. Sci. Part A, Polym. Chem. 43, 3461 (2005)CrossRefGoogle Scholar
  32. 32.
    S.S. Sheiko, B.S. Sumerlin, K. Matyjaszewski, Prog. Polym. Sci. 33, 759 (2008)CrossRefGoogle Scholar
  33. 33.
    J. Klein, Science 323, 47 (2009)CrossRefGoogle Scholar
  34. 34.
    S. Rathgeber, T. Pakula, A. Wilk, K. Matyjaszewski, K.L. Beers, J. Chem. Phys. 122, 124904 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    B. Zhang, F. Gröhn, J.S. Pedersen, K. Fischer, M. Schmidt, Macromolecules 39, 8440 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    H.-P. Hsu, W. Paul, K. Binder, Phys. Rev. Lett. 103, 198301 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    H.-P. Hsu, W. Paul, S. Rathgeber, K. Binder, Macromolecules 43, 1592 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    G.H. Fredrickson, Macromolecules 26, 2825 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    L. Feuz, F.A.M. Leermakers, M. Textor, O.V. Borisov, Macromolecules 38, 8891 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949)ADSCrossRefGoogle Scholar
  41. 41.
    A. Stroobants, H.N.W. Lekkerkerker, Th. Odijk, Macromolecules 19, 2232 (1986)ADSCrossRefGoogle Scholar
  42. 42.
    S. Faden, G. Maret, D.L.D. Caspar, R.B. Meyer, Phys. Rev. Lett. 63, 2068 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    D. Hinderberger, H.W. Spiess, G. Jeschke, Europhys. Lett. 70, 102 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    H.-P. Hsu, W. Paul, K. Binder, J. Chem. Phys. 137, 174902 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    H.-P.Hsu, W. Paul, K. Binder, Macromolecules 47, 427 (2014)CrossRefGoogle Scholar
  46. 46.
    W. Reisner, J.N. Pedersen, R.H. Austin, Rep. Prog. Phys. 75, 106601 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    H.-P. Hsu, K. Binder, Soft Matter 9, 10512 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    H.-P. Hsu, K. Binder, Macromolecules 46, 8017 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    A. Muralidhar, D.R. Tree, K.D. Dorfmann, Macromolecules 47, 8446 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    T.M. Birshtein, E.B. Zhulina, A.M. Skvortsov, Biopolymers 18, 1171 (1979)CrossRefGoogle Scholar
  51. 51.
    H.-P. Hsu, K. Binder, Macromolecules 46, 2496 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    A.R. Khokhlov, A.N. Semenov, Physica A 108, 546 (1981)ADSCrossRefGoogle Scholar
  53. 53.
    S.A. Egorov, A. Milchev, K. Binder, Phys. Rev. Lett. 116, 187801 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    A. Huang, A. Bhattacharya, K. Binder, EPL 105, 18002 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Institut für Physik, Johannes Gutenberg-UniversitätMainzGermany
  2. 2.Max-Planck-Institut für PolymerforschungMainzGermany
  3. 3.Institut für Physik, Martin-Luther-UniversitätHalleGermany

Personalised recommendations