The European Physical Journal Special Topics

, Volume 225, Issue 10, pp 1959–1984 | Cite as

κ-generalized models of income and wealth distributions: A survey

  • Fabio Clementi
  • Mauro Gallegati
  • Giorgio Kaniadakis
  • Simone Landini
Review Network Economics
Part of the following topical collections:
  1. Complex, Inter-networked Economic and Social Systems

Abstract

The paper provides a survey of results related to the “κ-generalized distribution”, a statistical model for the size distribution of income and wealth. Topics include, among others, discussion of basic analytical properties, interrelations with other statistical distributions as well as aspects that are of special interest in the income distribution field, such as the Gini index and the Lorenz curve. An extension of the basic model that is most able to accommodate the special features of wealth data is also reviewed. The survey of empirical applications given in this paper shows the κ-generalized models of income and wealth to be in excellent agreement with the observed data in many cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti, Econophysics of Wealth Distributions (Springer-Verlag Italia, Milan, 2005)Google Scholar
  2. 2.
    V.M. Yakovenko, in Encyclopedia of Complexity and System Science, edited by R.A. Meyers (Springer-Verlag, Berlin, 2009), p. 2800Google Scholar
  3. 3.
    V.M. Yakovenko, J. Barkley Rosser, Jr., Rev. Mod. Phys. 81, 1703 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    B.K. Chakrabarti, A. Chakraborti, S.R. Chakravarty, A. Chatterjee, Econophysics of Income and Wealth Distributions (Cambridge University Press, New York, 2013)Google Scholar
  5. 5.
    J.E. Stiglitz, The Price of Inequality: How Today’s Divided Society Endangers Our Future (W. W. Norton & Company, New York, 2012)Google Scholar
  6. 6.
    T. Piketty, Capital in the Twenty-First Century (The Belknap Press of Harvard University Press, Cambridge MA, 2014)Google Scholar
  7. 7.
    A.B. Atkinson, Inequality: What Can Be Done? (Harvard University Press, Cambridge MA, 2015)Google Scholar
  8. 8.
    J.E. Stiglitz, The Great Divide: Unequal Societies and What We Can Do About Them (W. W. Norton & Company, New York, 2015)Google Scholar
  9. 9.
    V. Pareto, Giorn. Econ. 10, 59 (1895)Google Scholar
  10. 10.
    V. Pareto, 1896, reprinted in Œeuvres complètes de Vilfredo Pareto, Tome 3: Écrits sur la courbe de la répartition de la richesse, edited by G. Busino (Librairie Droz, Geneva, 1965), p. 1Google Scholar
  11. 11.
    V. Pareto, Cours d’économie politique (Macmillan, London, 1897)Google Scholar
  12. 12.
    V. Pareto, Giorn. Econ. 14, 15 (1897)Google Scholar
  13. 13.
    C. Kleiber, S. Kotz, Statistical Size Distributions in Economics and Actuarial Sciences (John Wiley & Sons, New York, 2003)Google Scholar
  14. 14.
    F. Clementi, M. Gallegati, G. Kaniadakis, Eur. Phys. J. B 57, 187 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Clementi, T. Di Matteo, M. Gallegati, G. Kaniadakis, Physica A 387, 3201 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    F. Clementi, M. Gallegati, G. Kaniadakis, J. Stat. Mech. 2009, P02037 (2009)CrossRefGoogle Scholar
  17. 17.
    F. Clementi, M. Gallegati, G. Kaniadakis, Empir. Econ. 39, 559 (2010)CrossRefGoogle Scholar
  18. 18.
    F. Clementi, M. Gallegati, G. Kaniadakis, J. Econ. 105, 63 (2012)CrossRefGoogle Scholar
  19. 19.
    F. Clementi, M. Gallegati, G. Kaniadakis, J. Stat. Mech. 2012, P12006 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    F. Clementi, M. Gallegati, The Distribution of Income and Wealth: Parametric Modeling with the κ-Generalized Family (Springer International Publishing, Switzerland, 2016)Google Scholar
  21. 21.
    G. Kaniadakis, Physica A 296, 405 (2001)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    G. Kaniadakis, Phys. Rev. E 66, 056125 (2002)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    G. Kaniadakis, Phys. Rev. E 72, 036108 (2005)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    G. Kaniadakis, Eur. Phys. J. B 70, 3 (2009)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    G. Kaniadakis, Eur. Phys. J. A 40, 275 (2009)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    B. Trivellato, Math. Method. Oper. Res. 69, 1 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    D. Imparato, B. Trivellato, in Algebraic and Geometric Methods in Statistics, edited by P. Gibilisco, E. Riccomagno, M.P. Rogantin, H.P. Wynn (Cambridge University Press, New York, 2010), p. 307Google Scholar
  28. 28.
    B. Trivellato, Int. J. Theor. App. Finance 15, 1250038 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Kaniadakis, Entropy 15, 3983 (2013)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Cravero, G. Iabichino, G. Kaniadakis, E. Miraldi, A.M. Scarfone, Physica A 340, 410 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    B. Trivellato, Entropy 15, 3471 (2013)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    E. Moretto, S. Pasquali, B. Trivellato, Physica A 446, 246 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    D. Rajaoarison, D. Bolduc, H. Jayet, Econ. Lett. 86, 13 (2006)CrossRefGoogle Scholar
  34. 34.
    D. Rajaoarison, Econ. Lett. 100, 396 (2008)CrossRefGoogle Scholar
  35. 35.
    S. Landini, in The Distribution of Income and Wealth: Parametric Modeling with the κ-Generalized Family, by F. Clementi, M. Gallegati (Springer International Publishing, Switzerland, 2016), p. 93Google Scholar
  36. 36.
    R. D’Addario, Giorn. Econ. Ann. Econ. 33, 205 (1974)Google Scholar
  37. 37.
    C.P.A. Bartels, H. van Metelen, Alternative probability density functions of income: A comparison of the lognormal-, Gamma- and Weibull-distribution with Dutch data. Research Memorandum No. 29 (1975)Google Scholar
  38. 38.
    C.P.A. Bartels, Economic aspects of regional welfare, income distribution and unemployment (Martinus Nijhoff, Leiden, 1977)Google Scholar
  39. 39.
    P. Espinguet, M. Terraza, Econ. Appl. 36, 535 (1983)Google Scholar
  40. 40.
    J.B. McDonald, Econometrica 52, 647 (1984)CrossRefGoogle Scholar
  41. 41.
    N. Atoda, T. Suruga, T. Tachibanaki, Econ. Stud. Quart. 39, 14 (1988)Google Scholar
  42. 42.
    R.F. Bordley, J.B. McDonald, A. Mantrala, J. Income Distrib. 6, 91 (1996)Google Scholar
  43. 43.
    K. Brachmann, A. Stich, Trede, All. Stat. Arch. 80, 285 (1996)Google Scholar
  44. 44.
    T. Tachibanaki, T. Suruga, N. Atoda, J. Japan. Statist. Soc. 27, 191 (1997)CrossRefGoogle Scholar
  45. 45.
    B. Mandelbrot, Int. Econ. Rev. 1, 79 (1960)CrossRefGoogle Scholar
  46. 46.
    M.O. Lorenz, Publ. Am. Stat. Assoc. 9, 209 (1905)Google Scholar
  47. 47.
    C. Gini, Atti Reale Istit. Veneto Sci. Lett. Art. 73, 1203 (1914)Google Scholar
  48. 48.
    M. Okamoto, Extension of the κ-generalized distribution: New four-parameter models for the size distribution of income and consumption. LIS Working Paper No. 600 (2013), available at: http://www.lisdatacenter.org/wps/liswps/600.pdf
  49. 49.
    A.A. Drăgulescu, V.M. Yakovenko, Eur. Phys. J. B 20, 585 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    P.D. Allison, Am. Sociol. Rev. 43, 865 (1978)CrossRefGoogle Scholar
  51. 51.
    F.A. Cowell, Eur. Econ. Rev. 13, 147 (1980a)CrossRefGoogle Scholar
  52. 52.
    F.A. Cowell, Rev. Econ. Stud. 47, 521 (1980b)CrossRefGoogle Scholar
  53. 53.
    A.F. Shorrocks, Econometrica 48, 613 (1980)MathSciNetCrossRefGoogle Scholar
  54. 54.
    F.A. Cowell, K. Kuga, J. Econ. Theory 25, 131 (1981a)MathSciNetCrossRefGoogle Scholar
  55. 55.
    F.A. Cowell, K. Kuga, Eur. Econ. Rev. 15, 287 (1981b)CrossRefGoogle Scholar
  56. 56.
    H. Theil, Economics and Information Theory (North-Holland, Amsterdam, 1967)Google Scholar
  57. 57.
    C. Kleiber, Econ. Lett. 57, 39 (1997)CrossRefGoogle Scholar
  58. 58.
    C. Rao, Linear Statistical Inference and its Applications (John Wiley & Sons, New York, 1973)Google Scholar
  59. 59.
    J.K. Ghosh, Higher Order Asymptotics (Institute of Mathematical Statistics and American Statistical Association, Hayward CA, 1994)Google Scholar
  60. 60.
    R.J. Schoenberg, Comput. Econ. 10, 251 (1997)CrossRefGoogle Scholar
  61. 61.
    C. Dagum, in Encyclopedia of Statistical Sciences, Second Edition, Volume 5, edited by N. Balakrishnan, C.B. Read, B. Vidakovic (John Wiley & Sons, New York, 2006), p. 3363Google Scholar
  62. 62.
    C. Dagum, Statistica 66, 235 (2006)MathSciNetGoogle Scholar
  63. 63.
    J.B. Hagerbaumer, Rev. Econ. Stat. 59, 377 (1977)CrossRefGoogle Scholar
  64. 64.
    G. Pyatt, C.-N. Chen, J. Fei, Q. J. Econ. 95, 451 (1980)CrossRefGoogle Scholar
  65. 65.
    Y. Amiel, F.A. Cowell, A. Polovin, Economica 63, S63 (1996)CrossRefGoogle Scholar
  66. 66.
    S.P. Jenkins, M. Jäntti. Methods for Summarizing and Comparing Wealth Distributions. ISER Working Paper No. 2005-05 (2005), available at: https://www.iser.essex.ac.uk/publications/working-papers/iser/2005-05.pdf
  67. 67.
    F.A. Cowell, Measuring Inequality (Oxford University Press, New York, 2011)Google Scholar
  68. 68.
    G. Kaniadakis, M. Lissia, A.M. Scarfone, Physica A 340, 41 (2004)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    G. Kaniadakis, M. Lissia, A.M. Scarfone, Phys. Rev. E 71, 046128 (2005)ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    E. Parzen, J. Am. Stat. Assoc. 74, 105 (1979)MathSciNetCrossRefGoogle Scholar
  71. 71.
    W.J. Reed, Physica A 319, 469 (2003)ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    W.J. Reed, J. Income Distrib. 13, 7 (2004)Google Scholar
  73. 73.
    D.G. Champernowne, Econ. J. 63, 318 (1953)CrossRefGoogle Scholar
  74. 74.
    S.K. Singh, G.S. Maddala, Econometrica 44, 963 (1976)CrossRefGoogle Scholar
  75. 75.
    C. Dagum, Econ. Appl. 30, 413 (1977)Google Scholar
  76. 76.
    M. Okamoto, Econ. Bull. 32, 2969 (2012)Google Scholar
  77. 77.
    W.J. Reed, M. Jorgensen, Commun. Stat.-Theor. M. 33, 1733 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • Fabio Clementi
    • 1
  • Mauro Gallegati
    • 2
  • Giorgio Kaniadakis
    • 3
  • Simone Landini
    • 4
  1. 1.Dipartimento di Scienze Politiche, della Comunicazione e delle Relazioni Internazionali, Università degli Studi di MacerataMacerataItaly
  2. 2.Dipartimento di Scienze Economiche e Sociali, Università Politecnica delle MarcheAnconaItaly
  3. 3.Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24TorinoItaly
  4. 4.IRES Piemonte, Istituto di Ricerche Economico Sociali del PiemonteTorinoItaly

Personalised recommendations