The European Physical Journal Special Topics

, Volume 225, Issue 4, pp 715–728

Surface structuring of particle laden drops using electric fields

Review
Part of the following topical collections:
  1. Cooperative Particles: Patchy Colloids, Active Matter and Nanofluids

Abstract

Emulsion drops readily adsorb particles at their surfaces, which may lead to a fluid or solid layer encapsulating the drop, known as an armored drop. In this review, we discuss how electric fields can be used to manipulate colloidal surface structures, by dielectrophoretic or electro-hydrodynamic mechanisms and we also compare this to related phenomena in lipid bilayer vesicles. The phenomena discussed are important for a wide range of uses of particle laden drops, including emulsion stabilization, Janus or patchy mesocapsule-, scaffold- or other materials-production.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.U. Pickering, J. Chem. Soc. 91, 2001 (1907), doi: 10.1039/CT9079102001 CrossRefGoogle Scholar
  2. 2.
    C. Claire, Berton-Carabin, K. Schroën, Annual Rev. Food Sci. Technol. 6, 263 (2015), doi: 10.1146/annurev-food-081114-110822 CrossRefGoogle Scholar
  3. 3.
    J. Tang, P.J. Quinlan, K. Chiu, Soft Matter 11, 3512 (2015), doi: 10.1039/C5SM00247H ADSCrossRefGoogle Scholar
  4. 4.
    S. Lam, K.P. Velikov, O.D. Velev, Current Opinion Coll. Interface Sci. 19, 490 (2014)CrossRefGoogle Scholar
  5. 5.
    B. Neirinck, J. Fransaer, O. Van der Biest, J. Vleugels, Adv. Eng. Mater. 9, 57 (2007), doi: 10.1002/adem.200600191 CrossRefGoogle Scholar
  6. 6.
    S. Fujii, Y. Eguchi, Y. Nakamura, RSC Adv. 4, 32534 (2014), doi: 10.1039/c4ra04409f CrossRefGoogle Scholar
  7. 7.
    P.S. Clegg, J.W. Tavacoli, P.J. Wilde, Soft Matter (Review Article) 12, 998 (2016), doi: 10.1039/C5SM01663K ADSCrossRefGoogle Scholar
  8. 8.
    P. Dommersnes, Z. Rozynek, A. Mikkelsen, R. Castberg, K. Kjerstad, K. Hersvik, J.O. Fossum, Nat. Comm. 4, 2066 (2013), doi: 10.1038/ncomms3066 ADSCrossRefGoogle Scholar
  9. 9.
    Z. Rozynek, P. Dommersnes, A. Mikkelsen, L. Michels, J.O. Fossum, Eur. Phys. J. Special Topics 223, 1859 (2014), doi: 10.1140/epjst/e2014-02231-x ADSCrossRefGoogle Scholar
  10. 10.
    A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz, Science 298, 1006 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    R. Fantoni, J.W.O. Salari, B. Klumperman, Phys. Rev. E. 85, 061404 (2012), doi: 10.1103/PhysRevE.85.061404 ADSCrossRefGoogle Scholar
  12. 12.
    S. Nudurupati, M. Janjua, N. Aubry, P. Singh, Electrophoresis 29, 1164 (2008)CrossRefGoogle Scholar
  13. 13.
    E. Amah, K. Shah, I. Fischer, P. Singh, Soft Matter, 2016, Adv. Article, doi: 10.1039/C5SM02195B
  14. 14.
    Z. Rozynek, A. Mikkelsen, P. Dommersnes, J. Otto Fossum, Nat. Comm. 5, 3945 (2014), doi: 10.1038/ncomms4945 ADSCrossRefGoogle Scholar
  15. 15.
    P. Sheng, W. Wen, 44, 143 (2012), doi: 10.1146/annurev-fluid-120710-101024 Google Scholar
  16. 16.
    J.O. Fossum, Y. Meheust, K.P.S. Parmar, et al., Europhysics Lett. 74, 438 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    E. Amah, K. Shah, I. Fischer, P. Singh, Soft Matter, 2016, Adv. Article, doi: 10.1039/C5SM02195B
  18. 18.
    S. Nudurupati, M. Janjua, P. Singh, et al., Phys. Rev. E. 80, 010402 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    K. Hwang, P. Singh, N. Aubry, Electrophoresis 31, 850 (2010)CrossRefGoogle Scholar
  20. 20.
    W. He, N. Şenbil, A.D. Dinsmore, Soft Matter 11, 5087 (2015), doi: 10.1039/C5SM00245A ADSCrossRefGoogle Scholar
  21. 21.
    R. Dimova, N. Bezlyepkina, M.D. Jordö, R.L. Knorr, K.A. Riske, M. Staykova, P.M. Vlahovska, T. Yamamoto, P. Yang, R. Lipowsky, Soft Matter 5, 3201 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    A. Walther, A.H.E. Müller, Chem. Rev. 113, 5194 (2013), doi: 10.1021/cr300089t CrossRefGoogle Scholar
  23. 23.
    A.B. Pawar, I. Kretzschmar, Macromolecular Rapid Communications, Special Issue: Multifunctional Micro- and Nanoparticles 31, 150 (2010), doi: 10.1002/marc.200900614 Google Scholar
  24. 24.
    S. Nudurupati, M. Janjua, P. Singh, N. Aubry, ASME Proceedings: Heat Transfer, Fluid Flows, and Thermal Systems 10, 159 (2009)Google Scholar
  25. 25.
    Y. Méheust, K. Parmar, B. Schjelderupsen, J.O. Fossum, J. Rheol 55, 809 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    G. Taylor, Proc. Roy. Soc. Lond. A 291, 159 (1966)ADSCrossRefGoogle Scholar
  27. 27.
    R.S. Allan, S.G. Mason, P Proc. Roy. Soc. Lond. A 267, 45 (1962)ADSCrossRefGoogle Scholar
  28. 28.
    D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J.C. Baygents, N.J. Rivette, H.A. Stone, J. Fluid Mech. 368, 359 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    M.L. Yarmush, A. Golberg, G. Serša, T. Kotnik, D. Miklavčič, Ann. Rev. Biomedical Eng. 16, 295 (2014), doi: 10.1146/annurev-bioeng-071813-104622 CrossRefGoogle Scholar
  31. 31.
    S. Lecuyer, W.D. Ristenpart, O. Vincent, H.A. Stone, Appl. Phys. Lett. 92, 104105 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    P. Yang, R. Lipowsky, R. Dimova, Small 5, 2033 (2009), doi: 10.1002/smll.200900560 CrossRefGoogle Scholar
  33. 33.
    M. Ouriemi, P.M. Vlahovska, J. Fluid Mechan. 751, 106 (2014), doi: 10.1017/jfm.2014.289 ADSCrossRefGoogle Scholar
  34. 34.
    G. Quincke, Annalen der Physik 295, 417 (1896), doi: 10.1002/andp.18962951102 ADSCrossRefGoogle Scholar
  35. 35.
    D. Das, D. Saintillan, Phys. Rev. E 87, 043014 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    L.A. Fielding, S.P. Armesa, J. Mater. Chem. 22, 11235 (2012), doi: 10.1039/C2JM31433A CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Department of PhysicsNorwegian University of Science and Technology – NTNUTrondheimNorway

Personalised recommendations