Skip to main content
Log in

Surface structuring of particle laden drops using electric fields

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Emulsion drops readily adsorb particles at their surfaces, which may lead to a fluid or solid layer encapsulating the drop, known as an armored drop. In this review, we discuss how electric fields can be used to manipulate colloidal surface structures, by dielectrophoretic or electro-hydrodynamic mechanisms and we also compare this to related phenomena in lipid bilayer vesicles. The phenomena discussed are important for a wide range of uses of particle laden drops, including emulsion stabilization, Janus or patchy mesocapsule-, scaffold- or other materials-production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.U. Pickering, J. Chem. Soc. 91, 2001 (1907), doi: 10.1039/CT9079102001

    Article  Google Scholar 

  2. C. Claire, Berton-Carabin, K. Schroën, Annual Rev. Food Sci. Technol. 6, 263 (2015), doi: 10.1146/annurev-food-081114-110822

    Article  Google Scholar 

  3. J. Tang, P.J. Quinlan, K. Chiu, Soft Matter 11, 3512 (2015), doi: 10.1039/C5SM00247H

    Article  ADS  Google Scholar 

  4. S. Lam, K.P. Velikov, O.D. Velev, Current Opinion Coll. Interface Sci. 19, 490 (2014)

    Article  Google Scholar 

  5. B. Neirinck, J. Fransaer, O. Van der Biest, J. Vleugels, Adv. Eng. Mater. 9, 57 (2007), doi: 10.1002/adem.200600191

    Article  Google Scholar 

  6. S. Fujii, Y. Eguchi, Y. Nakamura, RSC Adv. 4, 32534 (2014), doi: 10.1039/c4ra04409f

    Article  Google Scholar 

  7. P.S. Clegg, J.W. Tavacoli, P.J. Wilde, Soft Matter (Review Article) 12, 998 (2016), doi: 10.1039/C5SM01663K

    Article  ADS  Google Scholar 

  8. P. Dommersnes, Z. Rozynek, A. Mikkelsen, R. Castberg, K. Kjerstad, K. Hersvik, J.O. Fossum, Nat. Comm. 4, 2066 (2013), doi: 10.1038/ncomms3066

    Article  ADS  Google Scholar 

  9. Z. Rozynek, P. Dommersnes, A. Mikkelsen, L. Michels, J.O. Fossum, Eur. Phys. J. Special Topics 223, 1859 (2014), doi: 10.1140/epjst/e2014-02231-x

    Article  ADS  Google Scholar 

  10. A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz, Science 298, 1006 (2002)

    Article  ADS  Google Scholar 

  11. R. Fantoni, J.W.O. Salari, B. Klumperman, Phys. Rev. E. 85, 061404 (2012), doi: 10.1103/PhysRevE.85.061404

    Article  ADS  Google Scholar 

  12. S. Nudurupati, M. Janjua, N. Aubry, P. Singh, Electrophoresis 29, 1164 (2008)

    Article  Google Scholar 

  13. E. Amah, K. Shah, I. Fischer, P. Singh, Soft Matter, 2016, Adv. Article, doi: 10.1039/C5SM02195B

  14. Z. Rozynek, A. Mikkelsen, P. Dommersnes, J. Otto Fossum, Nat. Comm. 5, 3945 (2014), doi: 10.1038/ncomms4945

    Article  ADS  Google Scholar 

  15. P. Sheng, W. Wen, 44, 143 (2012), doi: 10.1146/annurev-fluid-120710-101024

    Google Scholar 

  16. J.O. Fossum, Y. Meheust, K.P.S. Parmar, et al., Europhysics Lett. 74, 438 (2006)

    Article  ADS  Google Scholar 

  17. E. Amah, K. Shah, I. Fischer, P. Singh, Soft Matter, 2016, Adv. Article, doi: 10.1039/C5SM02195B

  18. S. Nudurupati, M. Janjua, P. Singh, et al., Phys. Rev. E. 80, 010402 (2009)

    Article  ADS  Google Scholar 

  19. K. Hwang, P. Singh, N. Aubry, Electrophoresis 31, 850 (2010)

    Article  Google Scholar 

  20. W. He, N. Şenbil, A.D. Dinsmore, Soft Matter 11, 5087 (2015), doi: 10.1039/C5SM00245A

    Article  ADS  Google Scholar 

  21. R. Dimova, N. Bezlyepkina, M.D. Jordö, R.L. Knorr, K.A. Riske, M. Staykova, P.M. Vlahovska, T. Yamamoto, P. Yang, R. Lipowsky, Soft Matter 5, 3201 (2009)

    Article  ADS  Google Scholar 

  22. A. Walther, A.H.E. Müller, Chem. Rev. 113, 5194 (2013), doi: 10.1021/cr300089t

    Article  Google Scholar 

  23. A.B. Pawar, I. Kretzschmar, Macromolecular Rapid Communications, Special Issue: Multifunctional Micro- and Nanoparticles 31, 150 (2010), doi: 10.1002/marc.200900614

    Google Scholar 

  24. S. Nudurupati, M. Janjua, P. Singh, N. Aubry, ASME Proceedings: Heat Transfer, Fluid Flows, and Thermal Systems 10, 159 (2009)

    Google Scholar 

  25. Y. Méheust, K. Parmar, B. Schjelderupsen, J.O. Fossum, J. Rheol 55, 809 (2011)

    Article  ADS  Google Scholar 

  26. G. Taylor, Proc. Roy. Soc. Lond. A 291, 159 (1966)

    Article  ADS  Google Scholar 

  27. R.S. Allan, S.G. Mason, P Proc. Roy. Soc. Lond. A 267, 45 (1962)

    Article  ADS  Google Scholar 

  28. D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.C. Baygents, N.J. Rivette, H.A. Stone, J. Fluid Mech. 368, 359 (1998)

    Article  ADS  Google Scholar 

  30. M.L. Yarmush, A. Golberg, G. Serša, T. Kotnik, D. Miklavčič, Ann. Rev. Biomedical Eng. 16, 295 (2014), doi: 10.1146/annurev-bioeng-071813-104622

    Article  Google Scholar 

  31. S. Lecuyer, W.D. Ristenpart, O. Vincent, H.A. Stone, Appl. Phys. Lett. 92, 104105 (2008)

    Article  ADS  Google Scholar 

  32. P. Yang, R. Lipowsky, R. Dimova, Small 5, 2033 (2009), doi: 10.1002/smll.200900560

    Article  Google Scholar 

  33. M. Ouriemi, P.M. Vlahovska, J. Fluid Mechan. 751, 106 (2014), doi: 10.1017/jfm.2014.289

    Article  ADS  Google Scholar 

  34. G. Quincke, Annalen der Physik 295, 417 (1896), doi: 10.1002/andp.18962951102

    Article  ADS  Google Scholar 

  35. D. Das, D. Saintillan, Phys. Rev. E 87, 043014 (2013)

    Article  ADS  Google Scholar 

  36. L.A. Fielding, S.P. Armesa, J. Mater. Chem. 22, 11235 (2012), doi: 10.1039/C2JM31433A

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Dommersnes or J.O. Fossum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dommersnes, P., Fossum, J. Surface structuring of particle laden drops using electric fields. Eur. Phys. J. Spec. Top. 225, 715–728 (2016). https://doi.org/10.1140/epjst/e2016-60013-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60013-9

Navigation