Skip to main content
Log in

Recent results on time-dependent Hamiltonian oscillators

  • Regular Article
  • Session B: Papers I
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Time-dependent Hamilton systems are important in modeling the nondissipative interaction of the system with its environment. We review some recent results and present some new ones. In time-dependent, parametrically driven, one-dimensional linear oscillator, the complete analysis can be performed (in the sense explained below), also using the linear WKB method. In parametrically driven nonlinear oscillators extensive numerical studies have been performed, and the nonlinear WKB-like method can be applied for homogeneous power law potentials (which e.g. includes the quartic oscillator). The energy in time-dependent Hamilton systems is not conserved, and we are interested in its evolution in time, in particular the evolution of the microcanonical ensemble of initial conditions. In the ideal adiabatic limit (infinitely slow parametric driving) the energy changes according to the conservation of the adiabatic invariant, but has a Dirac delta distribution. However, in the general case the initial Dirac delta distribution of the energy spreads and we follow its evolution, especially in the two limiting cases, the slow variation close to the adiabatic regime, and the fastest possible change – a parametric kick, i.e. discontinuous jump (of a parameter), where some exact analytic results are obtained (the so-called PR property, and ABR property). For the linear oscillator the distribution of the energy is always, rigorously, the arcsine distribution, whose variance can in general be calculated by the linear WKB method, while in nonlinear systems there is no such universality. We calculate the Gibbs entropy for the ensembles of noninteracting nonlinear oscillator, which gives the right equipartition and thermostatic laws even for one degree of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bountis, H. Christodoulidi, Nonlinear Phenomena in Complex Systems (Minsk) 18(33), 288 (2015)

    Google Scholar 

  2. T. Bountis, H. Skokos, Complex Hamiltonian Dynamics (Springer-Verlag, Berlin, 2012) and references therein

  3. P. Hertz, Annalen der Physik 338, 225 (1910)

    Article  ADS  Google Scholar 

  4. M. Robnik, Nonlinear Phenomena in Complex Systems (Minsk) 18, 356 (2015)

    Google Scholar 

  5. V.I. Arnold, Mathematical Methods in Classical Mechanics (Springer, New York, 1989)

  6. L.D. Landau, E.M. Lifshitz, Mechanics: Course of Theoretical Physics (Butterworth-Heineman, Oxford, 1996)

  7. W.P. Reinhardt, Prog. Theor. Phys. Suppl. 116, 179 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Henrard, in Dynamics Reported, Vol. 2, edited by C.K.R.T Jones, U. Kirchgraber, H.O. Walther (Springer, Berlin, 1993), p. 117

  9. P. Lochak, C. Meunier, Multiphase Averaging for Classical Systems (Springer, New York, 1988)

  10. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge, Cambridge University Press, 1998)

  11. A. Einstein, Inst. Intern. Phys. Solway, Rapports et discussions 1, 450 (1911)

    Google Scholar 

  12. R.M. Kulsrud, Phys. Rev. 106, 205 (1957)

    Article  ADS  Google Scholar 

  13. M. Robnik, V.G. Romanovski, J. Phys. A: Math. Theor. 33, L35 (2006)

    Article  MathSciNet  Google Scholar 

  14. F. Hertweck, A. Schluter, Z. Naturforschung 12A, 844 (1957)

    ADS  MathSciNet  Google Scholar 

  15. C.S. Gardner, Phys. Rev. 115, 791 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Lenard, Ann. Phys. NY 6, 261 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  17. E.D. Courant, H.S. Snyder, Ann. Phys. NY 3, 1 (1958)

    Article  ADS  Google Scholar 

  18. J.E. Littlewood, Ann. Phys. NY 21, 233 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Kruskal, J. Math. Phys. 3, 806 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  20. H.R. Lewis, J. Math. Phys. 9, 1976 (1968)

    Article  ADS  Google Scholar 

  21. K.R. Symon, J. Math. Phys. 11, 1320 (1970)

    Article  ADS  Google Scholar 

  22. G. Knorr, G.D. Pfirsch, Z. Naturforschung 21, 688 (1966)

    ADS  Google Scholar 

  23. R.E. Meyer, Z. angew. Math. Phys. 24, 293 (1973)

    Article  MathSciNet  Google Scholar 

  24. R.E. Meyer, Z. angew. Math. Phys. 24, 517 (1973)

    Article  MathSciNet  Google Scholar 

  25. J.W. Gibbs, Elementary Principles in Statistical Mechanics (Scribner’s sons, New York, 1902)

  26. J. Dunkel, S. Hilbert, Nat. Phys. 10, 68 (2014)

    Article  Google Scholar 

  27. M. Robnik, V.G. Romanovski, Open Syst. Inform. Dyn. 13, 197 (2006)

    Article  MathSciNet  Google Scholar 

  28. M. Robnik, V.G. Romanovski, H.-J. Stöckmann, J. Phys. A: Math. Theor. 33, L551 (2006)

    Article  Google Scholar 

  29. M. Robnik, V.G. Romanovski, in Proceedings of the 7th International Summer School and Conference Let’s Face Chaos through Nonlinear Dynamics, 2008, AIP Conf. Proc. 1076, edited by M. Robnik, V.G. Romanovski (AIP, Melville, New York, 2008)

  30. G. Papamikos, Ph.D. thesis, University of Ljubljana and CAMTP, University of Maribor, 2011

  31. G. Papamikos, M. Robnik, J. Phys. A: Math. Theor. 44, 315102 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. R.I. McLachlan, SIAM J. Sci. Comput. 16, 151 (1995)

    Article  MathSciNet  Google Scholar 

  33. R.I. MacLachlan, G.R.W. Quispel, Acta Numer. 11, 341 (2002)

    MathSciNet  Google Scholar 

  34. D. Andresas, M. Robnik, J. Phys. A: Math. Theor. 47, 355102 (2014)

    Article  Google Scholar 

  35. D. Andresas, Ph.D. thesis, University of Maribor, CAMTP, 2015

  36. G. Papamikos, M. Robnik, J. Phys. A: Math. Theor. 45, 015206-1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  37. D. Andresas, B. Batistić, M. Robnik, Phys. Rev. E 89, 062927 (2014)

    Article  ADS  Google Scholar 

  38. M. Robnik, V.G. Romanovski, J. Phys. A: Math. General 33, 5093 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Robnik, Phys. Rev. E (submitted) (2015)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robnik, M. Recent results on time-dependent Hamiltonian oscillators. Eur. Phys. J. Spec. Top. 225, 1087–1101 (2016). https://doi.org/10.1140/epjst/e2016-02656-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-02656-1

Navigation