The European Physical Journal Special Topics

, Volume 225, Issue 6–7, pp 1017–1035 | Cite as

From mechanical to biological oscillator networks: The role of long range interactions

Review Session A: Reviews
  • 60 Downloads
Part of the following topical collections:
  1. Mathematical Modeling of Complex Systems

Abstract

The study of one-dimensional particle networks of Classical Mechanics, through Hamiltonian models, has taught us a lot about oscillations of particles coupled to each other by nearest neighbor (short range) interactions. Recently, however, a careful analysis of the role of long range interactions (LRI) has shown that several widely accepted notions concerning chaos and the approach to thermal equilibrium need to be modified, since LRI strongly affects the statistics of certain very interesting, long lasting metastable states. On the other hand, when LRI (in the form of non-local or all-to-all coupling) was introduced in systems of biological oscillators, Kuramoto’s theory of synchronization was developed and soon thereafter researchers studied amplitude and phase oscillations in networks of FitzHugh Nagumo and Hindmarsh Rose (HR) neuron models. In these models certain fascinating phenomena called chimera states were discovered where populations of synchronous and asynchronous oscillators are seen to coexist in the same system. Currently, their synchronization properties are being widely investigated in HR mathematical models as well as realistic neural networks, similar to what one finds in simple living organisms like the C.elegans worm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, Applied Mathematical Sciences, Vol. 38 (Springer, 1992)Google Scholar
  2. 2.
    G.P. Berman, F.M. Izrailev, Chaos 15, 015104 (2005)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ch. Antonopoulos, T. Bountis, V. Basios, Physica A 390, 3290 (2011)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    T. Bountis, H. Skokos, Complex Hamiltonian Dynamics, Springer Synergetics series (Springer, Berlin, 2012)Google Scholar
  5. 5.
    M. Antoni, S. Ruffo, Phys. Rev. E 52, 2361 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    V. Latora, A. Rapisarda, S. Ruffo, Phys. Rev. Lett. 80, 692 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    C. Anteneodo, C. Tsallis, Phys. Rev. Lett. 80, 5313 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    T. Dauxois, V. Latora, A. Rapisarda, S. Ruffo, A. Torcini, edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Lect. Notes Phys. 602, 458 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    V.E. Tarasov, G.M. Zaslavsky, Commun. Nonlinear Sci. Numer. Simul. 11, 885 (2006)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    K.A. Takeuchi, H. Chaté, F. Ginelli, A. Politi, A. Torcini, Phys. Rev. Lett. 107, 124101 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    F. Ginelli, K.A. Takeuchi, H. Chaté, A. Politi, A. Torcini, Phys. Rev. E 84, 066211 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Th. Manos, S. Ruffo, Trans. Theor. Stat. Phys. 40, 360 (2011)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Christodoulidi, C. Tsallis, T. Bountis, EPL 108, 40006 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer, New York, 2009)Google Scholar
  15. 15.
    H. Christodoulidi, T. Bountis, C. Tsallis, L. Drossos, Chaotic behavior of the Fermi–Pasta–Ulam β–model with different ranges of particle interactions (submitted) (2015)Google Scholar
  16. 16.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization – A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001)Google Scholar
  17. 17.
    S. Boccaletti, J. Kurths, G.V. Osipov, D. Valladares, C. Zhou Phys. Rep. 366, 1 (2002)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A.T. Winfree, J. Theor. Biol. 28, 327374 (1967)Google Scholar
  19. 19.
    J.A. Acebron, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigleri, Rev. Mod. Phys. 77, 138 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Kuramoto, D. Battogtokh, Nonlin. Phen. Complex Sys. 5, 380 (2002)Google Scholar
  21. 21.
    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    D.M. Abrams, R. Mirollo, S. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    E. Ott, T.M. Antonsen, Chaos 18, 037113 (2008)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Hizanidis, V.G. Kanas, A. Bezerianos, T. Bountis, Int. J. Bif. Chaos 24, 1450030 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    J.L. Hindmarsh, R.M. Rose, Nature, Lond. 296, 162 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    J.L. Hindmarsh, R.M. Rose, Proc. R. Soc. London, Ser. B 221, 87 (1984)ADSCrossRefGoogle Scholar
  27. 27.
    C.R. Laing, Phys. Rev. E 81, 066221 (2010)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    C.R. Laing, K. Rajendran, I.G. Kevrekidis, Chaos 22, 013132 (2012)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    I. Omelchenko, Y.L. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012)CrossRefGoogle Scholar
  31. 31.
    A.M. Hagerstrom, E. Thomas, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Nat. Phys. 8, 658 (2012)CrossRefGoogle Scholar
  32. 32.
    N.C. Rattenborg, C.J. Amlaner, S.L. Lima, Neurosci. Biobehav. Rev. 24, 817 (2000)CrossRefGoogle Scholar
  33. 33.
    C.G. Mathews, J.A. Lesku, S.L. Lima, C.J. Amlaner, Ethology 112, 286 (2006)CrossRefGoogle Scholar
  34. 34.
    I. Omelchenko, O.E. Omel’chenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 110, 224101 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    E.A. Martens, S. Thutupalli, A. Fourriére, O. Hallatschek, Proc. Natl. Acad. Sci. 110, 10563 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    C.R. Laing, Chaos 19, 013113 (2009)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    C.R. Laing, Chaos 22, 043104 (2012)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    T. Bountis, V.G. Kanas, J. Hizanidis, A. Bezerianos, Eur. Phys. J. Special Topics 223, 721 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    C.G. Antonopoulos, A.S. Fokas, T. Bountis, Eur. Phys. J. Special Topics 225, 1255 (2016)Google Scholar
  40. 40.
    J. Hizanidis, N. Kouvaris, G. Zamora-Lopéz, A. Díaz-Guilera, Ch. Antonopoulos, Chimera-like dynamics in modular neural networks, Scientific Reports 6, 19845 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Center for Research and Applications of Nonlinear Systems, University of PatrasPatrasGreece
  2. 2.Department of MathematicsNazarbayev UniversityAstanaRepublic of Kazakhstan

Personalised recommendations