The European Physical Journal Special Topics

, Volume 225, Issue 6–7, pp 1001–1016

Regular and chaotic orbits in the dynamics of exoplanets

Review Session A: Reviews
Part of the following topical collections:
  1. Mathematical Modeling of Complex Systems

Abstract

Many of exoplanetary systems consist of more than one planet and the study of planetary orbits with respect to their long-term stability is very interesting. Furthermore, many exoplanets seem to be locked in a mean-motion resonance (MMR), which offers a phase protection mechanism, so that, even highly eccentric planets can avoid close encounters. However, the present estimation of their initial conditions, which may change significantly after obtaining additional observational data in the future, locate most of the systems in chaotic regions and consequently, they are destabilized. Hence, dynamical analysis is imperative for the derivation of proper planetary orbital elements. We utilize the model of spatial general three body problem, in order to simulate such resonant systems through the computation of families periodic orbits. In this way, we can figure out regions in phase space, where the planets in resonances should be ideally hosted in favour of long-term stability and therefore, survival. In this review, we summarize our methodology and showcase the fact that stable resonant planetary systems evolve being exactly centered at stable periodic orbits. We apply this process to co-orbital motion and systems HD 82943, HD 73526, HD 128311, HD 60532, HD 45364 and HD 108874.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Laskar, A.C.M. Correia, A&A 496, L5 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    A.C.M. Correia, J. Couetdic, J. Laskar, X. Bonfils, M. Mayor, J.-L. Bertaux, F. Bouchy, X. Delfosse, T. Forveille, C. Lovis, F. Pepe, C. Perrier, D. Queloz, S. Udry, A&A 511, A21 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    H. Rein, J.C.B. Papaloizou, W. Kley, A&A 510, A4 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    C. Lovis, D. Ségransan, M. Mayor, S. Udry, W. Benz, J.-L. Bertaux, F. Bouchy, A.C.M. Correia, J. Laskar, G. Lo Curto, C. Mordasini, F. Pepe, D. Queloz, N.C. Santos, A&A 528, A112 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    G. Campanella, R.P. Nelson, C.B. Agnor, MNRAS 433, 3190 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    R.A. Wittenmyer, S. Wang, J. Horner, C.G. Tinney, R.P. Butler, H.R.A. Jones, S.J. O’Toole, J. Bailey, B.D. Carter, G.S. Salter, D. Wright, J.-L. Zhou, ApJS 208, 2 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    K.I. Antoniadou, G. Voyatzis, H. Varvoglis, IAUS 310, 82 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    J. Lillo-Box, D. Barrado, L. Mancini, T. Henning, P. Figueira, S. Ciceri, N. Santos, A&A 576, A88 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    F. Marzari, S.J. Weidenschilling, Icarus 156, 570 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    S. Chatterjee, E.B. Ford, S. Matsumura, F.A. Rasio, ApJ 686, 580 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    E.W. Thommes, J.J. Lissauer, ApJ 597, 566 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    M.H. Lee, E.W. Thommes, ApJ 702, 1662 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    A.C.M. Correia, J. Laskar, F. Farago, G. Boué, CeMDA 111, 105 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Ferraz-Mello, C. Beaugé, T.A. Michtchenko, CeMDA 87, 99 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M.H. Lee, ApJ 611, 517 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    C. Beaugé, T.A. Michtchenko, S. Ferraz-Mello, MNRAS 365, 1160 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    J.D. Hadjidemetriou, G. Voyatzis, CeMDA 107, 3 (2010)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J.D. Hadjidemetriou, G. Voyatzis, IJBC 21, 2195 (2011)ADSMathSciNetGoogle Scholar
  19. 19.
    G. Voyatzis, K.I. Antoniadou, K. Tsiganis, CeMDA 119, 221 (2014)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    T.A. Michtchenko, C. Beaugé, S. Ferraz-Mello, CeMDA 94, 411 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    G. Voyatzis, T. Kotoulas, J.D. Hadjidemetriou, MNRAS, 395, 2147 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    J.-B. Delisle, J. Laskar, A.C.M. Correia, G. Boué, A&A 546, A71 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    K.I. Antoniadou, G. Voyatzis, CeMDA 115, 161 (2013)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    K.I. Antoniadou, G. Voyatzis, ApSS 349, 657 (2014)ADSGoogle Scholar
  25. 25.
    J.-B. Delisle, J. Laskar, A.C.M. Correia, A&A 566, A137 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    K.I. Antoniadou, G. Voyatzis, H. Varvoglis, in Proceedings of the 6th International Conference on Numerical Analysis (NumAn2014) (AMCL/TUC, Greece, 2014), p. 7, ISBN: 978-960-8475-22-9Google Scholar
  27. 27.
    K.I. Antoniadou, Ph.D. thesis, Aristotle University of Thessaloniki, 2014Google Scholar
  28. 28.
    G. Voyatzis, ApJ 675, 802 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    K.I. Antoniadou, G. Voyatzis, T. Kotoulas, IJBC 21, 2211 (2011)ADSMathSciNetGoogle Scholar
  30. 30.
    C. Beaugé, S. Ferraz-Mello, T.A. Michtchenko, ApJ 593, 1124 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    S. Ferraz-Mello, T.A. Michtchenko, C. Beaugé, in Chaotic Worlds: from Order to Disorder in Gravitational N-Body Dynamical Systems, edited by B.A. Steves, A.J. Maciejewski, M. Hendry (Springer, The Netherlands, 2006), p. 255Google Scholar
  32. 32.
    C. Marchal, The three-body problem (Elsevier, Amsterdam, 1990)Google Scholar
  33. 33.
    J.D. Hadjidemetriou, in Chaotic Worlds: from Order to Disorder in Gravitational N-Body Dynamical Systems, edited by B.A. Steves, A.J. Maciejewski, M. Hendry (Springer, The Netherlands, 2006), p. 43Google Scholar
  34. 34.
    J.D. Hadjidemetriou, D. Psychoyos, G. Voyatzis, CeMDA 104, 23 (2009)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    J.D. Hadjidemetriou, G. Voyatzis, CeMDA 111, 179 (2011)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    P. Robutel, A. Pousse, CeMDA 117, 17 (2013)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    C. Froeschlé, E. Lega, R. Gonczi, CeMDA 67, 41 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    X. Tan, M.J. Payne, M.H. Lee, E.B. Ford, A.W. Howard, J.A. Johnson, G.W. Marcy, J.T. Wright, ApJ 777, 101 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    R.A. Wittenmyer, X. Tan, M.H. Lee, J. Horner, C.G. Tinney, R.P. Butler, G.S. Salter, B.D. Carter, H.R.A. Jones, S.J. O’Toole, J. Bailey, D. Wright, J.D. Crane, S.A. Schectman, P. Arriagada, I. Thompson, D. Minniti, M. Diaz, ApJ 780, 140 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    R. Barnes, R. Deitrick, R. Greenberg, T.R. Quinn, S.N. Raymond, ApJ 801, 101 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    S.S. Vogt, R.P. Butler, G.W. Marcy, D.A. Fischer, G.W. Henry, G. Laughlin, J.T. Wright, J.A. Johnson, ApJ 632, 638 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    A.C.M. Correia, S. Udry, M. Mayor, W. Benz, J.-L. Bertaux, F. Bouchy, J. Laskar, C. Lovis, C. Mordasini, F. Pepe, D. Queloz, A&A 496, 521 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    K.I. Antoniadou, G. Voyatzis, MNRAS 461, 3822 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations