The European Physical Journal Special Topics

, Volume 225, Issue 6–7, pp 977–999

Complexity methods applied to turbulence in plasma astrophysics

  • L. Vlahos
  • H. Isliker
Review Session A: Reviews
  • 37 Downloads
Part of the following topical collections:
  1. Mathematical Modeling of Complex Systems

Abstract

In this review many of the well known tools for the analysis of Complex systems are used in order to study the global coupling of the turbulent convection zone with the solar atmosphere where the magnetic energy is dissipated explosively. Several well documented observations are not easy to interpret with the use of Magnetohydrodynamic (MHD) and/or Kinetic numerical codes. Such observations are: (1) The size distribution of the Active Regions (AR) on the solar surface, (2) The fractal and multi fractal characteristics of the observed magnetograms, (3) The Self-Organised characteristics of the explosive magnetic energy release and (4) the very efficient acceleration of particles during the flaring periods in the solar corona. We review briefly the work published the last twenty five years on the above issues and propose solutions by using methods borrowed from the analysis of complex systems. The scenario which emerged is as follows: (a) The fully developed turbulence in the convection zone generates and transports magnetic flux tubes to the solar surface. Using probabilistic percolation models we were able to reproduce the size distribution and the fractal properties of the emerged and randomly moving magnetic flux tubes. (b) Using a Non Linear Force Free (NLFF) magnetic extrapolation numerical code we can explore how the emerged magnetic flux tubes interact nonlinearly and form thin and Unstable Current Sheets (UCS) inside the coronal part of the AR. (c) The fragmentation of the UCS and the redistribution of the magnetic field locally, when the local current exceeds a Critical threshold, is a key process which drives avalanches and forms coherent structures. This local reorganization of the magnetic field enhances the energy dissipation and influences the global evolution of the complex magnetic topology. Using a Cellular Automaton and following the simple rules of Self Organized Criticality (SOC), we were able to reproduce the statistical characteristics of the observed time series of the explosive events, (d) finally, when the AR reaches the turbulently reconnecting state (in the language of the SOC theory this is called SOC state) it is densely populated by UCS which can act as local scatterers (replacing the magnetic clouds in the Fermi scenario) and enhance dramatically the heating and acceleration of charged particles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Abramenko, Sol. Phys. 228, 29 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    T. Amari, J.F. Luciani, J.J. Aly, Z. Mikic, J. Linker, ApJ 595, 1231 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    J. Ambrosiano, W.H. Matthaeus, M.L. Goldstein, D. Plante, J. Geoph. Res. 93, 14383 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    A. Anastasiadis, L. Vlahos, M.K. Georgoulis, ApJ 428, 819 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    V. Archontis, F. Moreno-Insertis, K. Galsgaard, A. Hood, E. O’ Shea, A&A 426, 1047 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    V. Archontis, A.W. Hood, C. Brady, A&A 46, 367 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    V. Archontis, A.W. Hood, A. Savcheva, L. Golub, E. DeLuca, ApJ 691, 1291 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    K. Arzner, L. Vlahos, L., ApJ 605, L69 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    K. Arzner, B. Knaepen, D. Carati, N. Denewet, L. Vlahos, ApJ 637, 322 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    M. Aschwanden, et al., SSRv 198, 47, (2014)ADSGoogle Scholar
  11. 11.
    M. Aschwanden, Self-Organized Criticality in Astrophysics (Springer-Verlag, Berlin, 2011)Google Scholar
  12. 12.
    G. Aulanier, E. Pariat, P. Demoulin, A&A 444, 961 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A.C. Balke, C.J. Schrijver, C. Zwaan, T.D. Tarbell, Sol. Phys. 143, 215 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    M. Barta, J. Brüchner, M. Karlicky, P. Kotrc, ApJ 730, 47 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    G. Baumann, AA. Nordlund, ApJ 759, 5 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    D. Biskamp, H. Welter, Phys. Fluids B 1, 1964 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    J.T. Bogdan, Phys. Fluids 27, 994 (1984)ADSCrossRefGoogle Scholar
  19. 19.
    J.T. Bogdan, ApJ 299, 510 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    J.T. Bogdan, I. Lerche, ApJ 296, 719 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    E. Buchin, M. Velli, ApJ 662, 701 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    P.J. Cargill, L. Vlahos, G. Baumann, J.F. Drake, AA. Nordlund, SSRev 173, 223 (2012)ADSGoogle Scholar
  23. 23.
    P. Charbonneau, S.W. McIntosh, H.L. Liu, T.J. Bogdan, Sol. Phys. 203, 321 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    B. Chopard, M. Droz, Celular Automata Modelling of Physical Systems (Cambridge University Press, Oxford, 2005)Google Scholar
  25. 25.
    N.B. Crosby, M.J. Aschwanden, B.R. Dennis, Sol. Phys. 143, 257 (1992)Google Scholar
  26. 26.
    R.B. Dahlburg et al., ApJ 622, 1191 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    R.B. Dahlburg, G. Eunaudi, A.F. Rappazzo, M. Valli, A&A 544, L20 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    J.T. Dahlin, J.F. Drake, M. Swisdak, Phys. Plasmas 22, 100704 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    P. Démoulin, Adv. Space Res. 39, 1367 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    M. Dimitropoulou, M. Georgoulis, H. Isliker, L. Vlahos, A. Anastasisadis, D. Strintzi, X. Mousas, A&A 505, 1245 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    M. Dimitropoulou, H. Isliker, L. Vlahos, M. Georgoulis, A&A 529, 101 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    M. Dimitropoulou, H. Isliker, L. Vlahos, M. Georgoulis, A&A 553, 65 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    P. Dmitruk, D.O. Gomez, E.E. DeLuca, ApJ 505, 974 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    P. Dmitruk, W.H. Matthaeus, N. Seenu, M.R. Brown, ApJ 597, L81 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    P. Dmitruk, W.H. Matthaeus, N. Seenu, ApJ 617, 667 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    J.D. Drake, M. Swisdak, H. Che, M. A. Shay, Nature 443, 553 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    G. Eunaudi, M. Velli, Phys. Plasmas 6, 4146 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    K. Falconer, Fractal Geometry (John Wiley, Chichester, 1990)Google Scholar
  39. 39.
    Y. Fan, ApJ 697, 1529, (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Fan, Living Rev. Solar Phys. 6, 4, (2009)ADSCrossRefGoogle Scholar
  41. 41.
    T. Fragos, M. Rantziou, L. Vlahos, A&A 420, 719 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    J. Fröhlich, D. Ruelle, Comm. Math. Phys. 87, 1 (1982)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    K. Galsgaard, A&A 315, 312 (1996)ADSGoogle Scholar
  44. 44.
    K. Galsgaard, AA. Nordlund, J. Geoph. Res. 102, 231 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    K. Galsgaard, F. Moreno-Insertis, V. Archontis, A. Hood, ApJ 618, L153 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    K. Galsgaard, V. Archontis, F. Moreno-Insertis, A.W. Hood, ApJ 666, 516 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    M.K. Georgoulis, L. Vlahos, ApJ 469, L135 (1996)ADSCrossRefGoogle Scholar
  48. 48.
    M.K. Georgoulis, L. Vlahos, A&A 336, 721 (1998)ADSGoogle Scholar
  49. 49.
    M.K. Georgoulis, M. , Velli, G. Eunaudi, ApJ 497, 957 (1998)ADSCrossRefGoogle Scholar
  50. 50.
    M.K. Georgoulis, Sol. Phys. 228, 5 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    M.K. Georgoulis, Solar Phys. 276, 161 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    D.T. Gillespie, Phys. Rev. E 54, 2084 (1996)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Gordovsyy, P.K. Browning, ApJ 729, 101 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    K.L. Harvey, C. Zwaan, Sol. Phys. 148, 85 (1993)ADSCrossRefGoogle Scholar
  55. 55.
    J. Holland, Hidden order: How adaptation builds complexity (Perseus, Cambridge, M, 1995)Google Scholar
  56. 56.
    A.W. Hood, P.J. Cargill, P. Browning, P.K.K.V. Tam, ApJ (in press) (2016)Google Scholar
  57. 57.
    M. Hoshino, Phys. Rev. Lett. 108, 135003 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    D.W. Hughes, J.G. Wissink, P.C. Matthews, M.R.E. Proctor, in Advances in the Physics of Sunspots, edited by B. Schmieder, J.C. del Toro Iniesta and M. Vazquez (2005), p. 66Google Scholar
  59. 59.
    H. Isliker, A. Anastasiadis, D. Vassiliadis, L. Vlahos, A&A 363, 1134 (1998)ADSGoogle Scholar
  60. 60.
    H. Isliker, A. Anastasiadis, L. Vlahos, A&A 363, 1134 (2000)ADSGoogle Scholar
  61. 61.
    H. Isliker, A. Anastasiadis, L. Vlahos, A&A 377, 1068 (2001)ADSCrossRefGoogle Scholar
  62. 62.
    H. Isliker, L. Vlahos, Phys. Rev. E 67, 026413 (2003)ADSCrossRefGoogle Scholar
  63. 63.
    H. Isliker, L. Vlahos, Y. Kominis, K. Hizanidis, eprint [arXiv:0805.0419] (2008)
  64. 64.
    H.J. Jensen, Self-Organizsd Criticality: Emergent Complex Behaviour in Physical and Biological Systems (Campridge University Press, Oxford, 1998)Google Scholar
  65. 65.
    H. Karimabadi, et al., Phys. Plasmas 20, 012303 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    C.F. Karney, Comput. Phys. Rep. 4, 183 (1986)ADSCrossRefGoogle Scholar
  67. 67.
    J.A.S. Kauffman, At home in the universe (Oxford, New York, 1995)Google Scholar
  68. 68.
    J.A.S. Kelso, Dynamic Paterns: The self-organization of brain and behavior (MIT Press, Cambridge, M, 1995)Google Scholar
  69. 69.
    G. Kowal, E.M. de Gouveia Dal Pino, A. Lazarian, ApJ 735, 102 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    J.K. Lawrence, A.A. Ruzmaikin, A.C. Cadavid, ApJ 417, 805 (1993)ADSCrossRefGoogle Scholar
  71. 71.
    J. K. Lawrence, Sol. Phys. 135, 249 (1991)ADSCrossRefGoogle Scholar
  72. 72.
    J.K. Lawrence, C.J. Schrijver, ApJ 411, 402 (1993)ADSCrossRefGoogle Scholar
  73. 73.
    A. Lazarian, E. Vishniac, ApJ 517, 700 (1999)ADSCrossRefGoogle Scholar
  74. 74.
    A. Lazarian, L. Vlahos, G. Kowal, H. Yan, A. Beresnyak, E.M. Gouveia Dal Pinto, SSRev 173, 557 (2012)ADSGoogle Scholar
  75. 75.
    A. Lenard, J.B. Bernstein, Phys. Rev. 112, 1456 (1958)ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    R.P. Lin, R.P., R.A. Schwartz, S.R. Kane, R.M. Pelling, C.C. Hurly, ApJ 285, 421 (1984)ADSCrossRefGoogle Scholar
  77. 77.
    D.W. Longcope, Living Rev. Solar Phys. 2, 7 (2005)ADSCrossRefGoogle Scholar
  78. 78.
    E.T. Lu, R.J. Hamilton, ApJ 380, L89 (1991)ADSCrossRefGoogle Scholar
  79. 79.
    E.T. Lu, R.J. Hamilton, J.M. McTiernan, K.R. Bromund, ApJ 412, 841 (1993)ADSCrossRefGoogle Scholar
  80. 80.
    W.H. Matthaeus, S.L. Lamkin, Phys. Fluids 29, 2513 (1986)ADSCrossRefGoogle Scholar
  81. 81.
    N. Meunier, ApJ 515, 801 (1999)ADSCrossRefGoogle Scholar
  82. 82.
    R.T.J. McAteer, P.T. Gallagher, J. Ireland, ApJ 631, 628 (2005)ADSCrossRefGoogle Scholar
  83. 83.
    A.V. Milovanov, L.M. Zelenyi, Phys. Fluids. B 5, 2609 (1993)ADSMathSciNetCrossRefGoogle Scholar
  84. 84.
    F. Moreno-Insertis, in Advances in Physics of Sunspots, edited by. B. Schminder, J.C. del Toro Iniesta and M. Vazquez (1997), p. 45Google Scholar
  85. 85.
    N. Nishizuka, K. Shibata, Phys. Rev. Lett. 110, 051101 (2013)ADSCrossRefGoogle Scholar
  86. 86.
    A. Nordlund, K. Galsgaard, in Solar and Heliospheric Plasma Physics, edited by G.M. Simnett, C.A. Allisandrakis, L. Vlahos (Springer Verlag, Berlin, 1997)Google Scholar
  87. 87.
    M. Onofri, L. Primavera, F. Malara, P. Veltri, Phys. Plasmas 11, 4837 (2004)ADSCrossRefGoogle Scholar
  88. 88.
    M. Onofri, H. Isliker, L. Vlahos, Phys. Rev. Lett. 96, 151102 (2006)ADSCrossRefGoogle Scholar
  89. 89.
    K. Papadopoulos, Rev. Geophys. Space Phys. 15, 113 (1977)ADSCrossRefGoogle Scholar
  90. 90.
    E.N. Parker, ApJ 330, 474 (1988)ADSCrossRefGoogle Scholar
  91. 91.
    P. Petkaki, M.P. Freeman, ApJ 686, 686 (2008)ADSCrossRefGoogle Scholar
  92. 92.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, 2nd ed. (Cambridge University Press, Cambridge, 1992)Google Scholar
  93. 93.
    R.Z. Sagdeev, in Proceedings in Applied Mathematics 18, edited by H. Grad (Providence: Am. Math. Soc.) (1967), p. 28Google Scholar
  94. 94.
    C.J. Schrijver, C. Zwaan, A.C. Balke, T.D. Tarbell, J.K. Lawrence, A&A 253, L1 (1992)ADSGoogle Scholar
  95. 95.
    P.E. Seiden, D.G. Wentzel, ApJ 460, 522 (1996)ADSCrossRefGoogle Scholar
  96. 96.
    S. Servidio, W.H. Matthaeus, M.A. Shay, P.A. Cassak, P. Dmitruk, Phys. Rev. Lett. 102, 115003 (2009)ADSCrossRefGoogle Scholar
  97. 97.
    S. Servidio, W.H. Matthaeus, M.A. Shay, P. Dmitruk, P.A. Cassak, M. Wan, Phys. Plasmas 17, 032315 (2010)ADSCrossRefGoogle Scholar
  98. 98.
    T.H. Solomon, E.R. Weeks, H.L. Swinney, Physica D 76, 70 (1994)ADSCrossRefGoogle Scholar
  99. 99.
    K.V. Tam, A.W. Hood, P.K. Browning, P.J. Cargill, A&A 580, 122 (2015)ADSCrossRefGoogle Scholar
  100. 100.
    T. Török, B. Kliem, ApJ 630, L97 (2005)ADSCrossRefGoogle Scholar
  101. 101.
    A. Toutountzi, L. Vlahos, H. Isliker, K. Moraitis, M. Georgoulis, G. Chintzoglou, A&A (submitted) (2016)Google Scholar
  102. 102.
    R. Turkmani, P.J. Cargill, K. Galsgaard, L. Vlahos, H. Isliker, A&A 449, 749 (2006)ADSCrossRefGoogle Scholar
  103. 103.
    M. Ugai, Phys. Fluids B 4, 2953 (1992)ADSCrossRefGoogle Scholar
  104. 104.
    V. Uritsky, M. Paxzuski, J.M. Devila, S.I. Jones, Phys. Rev. Lett. 99, 025001 (2007)ADSCrossRefGoogle Scholar
  105. 105.
    V. Uritsky, J.M. Devila, ApJ 748, 60 (2012)ADSCrossRefGoogle Scholar
  106. 106.
    V. Uritsky, J.M. Devila, L. Ofman, O. Coyner, ApJ 769, 62 (2013)ADSCrossRefGoogle Scholar
  107. 107.
    L. Vlahos, et al., 1984, in Energetic Phenomena on the Sun, Eds. M., Kundu, B., Woodgate, NASA Conference Publication 2439Google Scholar
  108. 108.
    L. Vlahos, in Statistical Description of Transport in Plasmas, Astro- and Nuclear Physics, edited by J. Misquich, G. Pelletier, P. Schuck (Nova Science Publishers, New York, 1993)Google Scholar
  109. 109.
    L. Vlahos, Space Scien. Rev., 68, 39 (1994)ADSCrossRefGoogle Scholar
  110. 110.
    L. Vlahos, M. Georgoulis, R. Kluiving, P. Paschos, A&A 299, 897 (1995)ADSGoogle Scholar
  111. 111.
    L. Vlahos, T. Fragos, H. Isliker, M. Gergoulis, ApJ 575, L87 (2002)ADSCrossRefGoogle Scholar
  112. 112.
    L. Vlahos, H. Isliker, F. Lepreti ApJ 608, 540 (2004)CrossRefGoogle Scholar
  113. 113.
    L. Vlahos, M. Georgoulis, ApJ 603, L61 (2004)ADSCrossRefGoogle Scholar
  114. 114.
    L. Vlahos, S. Krucker, P. Cargill, in Turbulence in Space Plasmas, edited by L. Vlahos and P. Cargill (Lecture Notes in Physics, Springer Verlag, 2008)Google Scholar
  115. 115.
    M. Wan, W.H. Matthaeus, V. Roytershteyn, H. Karimabadi, T. Parashar, P. Wu, M. Shay, Phys. Rev. Lett. 114, 175002 (2015)ADSCrossRefGoogle Scholar
  116. 116.
    E.R. Weeks, J.S. Urbach, H.L. Swinney, Physica D 97, 291 (1996)ADSCrossRefGoogle Scholar
  117. 117.
    D.G. Wentzel, P.E. Seiden, ApJ 390, 280 (1992)ADSCrossRefGoogle Scholar
  118. 118.
    T. Wiegelmann, Sol. Phys. 219, 87 (2004)ADSCrossRefGoogle Scholar
  119. 119.
    T. Wiegelmann, T. Sakurai, Living Rev. in Sol. Phys. 9, 5 (2012)ADSCrossRefGoogle Scholar
  120. 120.
    V. Zhdankin, S. Boldyrev, J.C. Perez, S.M. Tobias, ApJ 795, 8 (2015)Google Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • L. Vlahos
    • 1
  • H. Isliker
    • 1
  1. 1.Department of PhysicsAristotle UniversityThessalonikiGreece

Personalised recommendations