The European Physical Journal Special Topics

, Volume 225, Issue 6–7, pp 959–976

Fundamental concepts of quantum chaos

  • M. Robnik
Review Session A: Reviews
  • 84 Downloads
Part of the following topical collections:
  1. Mathematical Modeling of Complex Systems

Abstract

We review the fundamental concepts of quantum chaos in Hamiltonian systems. The quantum evolution of bound systems does not possess the sensitive dependence on initial conditions, and thus no chaotic behaviour occurs, whereas the study of the stationary solutions of the Schrödinger equation in the quantum phase space (Wigner functions) reveals precise analogy of the structure of the classical phase portrait. We analyze the regular eigenstates associated with invariant tori in the classical phase space, and the chaotic eigenstates associated with the classically chaotic regions, and the corresponding energy spectra. The effects of quantum localization of the chaotic eigenstates are treated phenomenologically, resulting in Brody-like level statistics, which can be found also at very high-lying levels, while the coupling between the regular and the irregular eigenstates due to tunneling, and of the corresponding levels, manifests itself only in low-lying levels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-J. Stöckmann, Quantum Chaos: An Introduction (Cambridge Univ. Press, Cambridge, 1999)Google Scholar
  2. 2.
    F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 2010)Google Scholar
  3. 3.
    M. Robnik, Nonl. Phen. Compl. Syst. (Minsk) 1, 1 (1998)MathSciNetGoogle Scholar
  4. 4.
    M. Robnik, in Proceedigs of Waseda AICS Symposium and the 14th Slovenia-Japan Seminar, New challenges in complex systems science, 2014, edited by Y. Aizawa, Y. Miwa (Waseda University, Tokyo, 2015) B11, No. 3, p. 13Google Scholar
  5. 5.
    M.V. Berry, Eur. J. Phys. 2, 91 (1981)CrossRefGoogle Scholar
  6. 6.
    M. Robnik, G. Veble, J. Phys. A: Math. Gen. 49, 4669 (1998)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1980)Google Scholar
  8. 8.
    L.A. Bunimovich, Func. Anal. Appl. 8, 254 (1974)CrossRefGoogle Scholar
  9. 9.
    G. Casati, B.V. Chirikov, F.M. Izrailev, J. Ford, Lect. Notes Phys. 93, 334 (1979)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S.W. McDonald, A.N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    S.W. McDonald, A.N. Kaufman, Phys. Rev. A 37, 3067 (1988)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M.V. Berry, J. Phys. A: Math. Gen. 10, 2083 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    B. Li, M. Robnik, J. Phys. A: Math. Gen. 27, 5509 (1994)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    O. Bohigas, M.J. Giannoni, C. Schmit, Phys. Rev. Lett. 52, 1 (1984)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M.V. Berry, Proc. Roy. Soc. Lond. A 400, 229 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    M. Sieber, K. Richter, Phys. Scr. T90, 128 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    S. Müller, S. Heusler, A. Altland, P. Braun, F. Haake, New J. Phys. 11, 103025 (2009) and references thereinCrossRefGoogle Scholar
  18. 18.
    M.L. Mehta, Random Matrices (Academic Press, Boston, 1991)Google Scholar
  19. 19.
    M. Robnik, M.V. Berry, J. Phys. A: Math. Gen. 19, 669 (1986)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Robnik, in Proceedings of the International Conference Quantum chaos and statistical nuclear physics, Cuernavaca, Mexico, 1986, edited by T.H. Seligman, H. Nishioka (Springer, Berlin, 1986), Lect. Notes Phys. 263, 120 (1986)Google Scholar
  21. 21.
    S. Grossmann, M. Robnik, Z. Naturforsch. 62a, 471 (2007)ADSGoogle Scholar
  22. 22.
    G. Hackenbroich, H.A. Weidenmüller, Phys. Rev. Lett. 74, 4118 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    M. Robnik, H.M. David, G. Vidmar, V.G. Romanovski, Nonl. Phen. Compl. Syst. (Minsk) 13(1), 13 (2010)MathSciNetGoogle Scholar
  24. 24.
    I.C. Percival, J. Phys. B: At. Mol. Phys. 6, L229 (1973)ADSCrossRefGoogle Scholar
  25. 25.
    A.L. Shnirelman, Uspekhi Matem. Nauk 29, 181 (1979)Google Scholar
  26. 26.
    A. Voros, Lect. Notes Phys. 93, 326 (1979)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    G. Veble, M. Robnik, Junxian Liu, J. Phys. A: Math. Gen. 32 6423 (1999)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    M.V. Berry, M. Robnik, J. Phys. A: Math. Gen. 17, 2413 (1984)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    T. Prosen, M. Robnik, J. Phys. A: Math. Gen. 32, 1863 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    T. Prosen, M. Robnik, J. Phys. A: Math. Gen. 27, L459 (1994)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    B. Batistić, M. Robnik, J. Phys. A: Math. Theor. 43, 215101 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    B. Batistić, M. Robnik, J. Phys. A: Math. Theor. 46, 315102 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    B. Batistić, M. Robnik, Phys. Rev. E 88, 052913 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    T. Manos, M. Robnik, Phys. Rev. E 87, 062905 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    J.M. Tualle, A. Voros, Chaos Solitons Fractals 5, 1085 (1995)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Bäcker, S. Fürstberger, R. Schubert, Phys. Rev. E 70, 036204 (2004)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Robnik, J. Phys. A: Math. Gen. 16, 971 (1983)MathSciNetCrossRefGoogle Scholar
  38. 38.
    M. Robnik, J. Phys. A: Math. Gen. 17 1049 (1984)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    F.M. Izrailev, Physics Reports 196, 299 (1990)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    B. Batistić, T. Manos, M. Robnik, Europhys. Lett. 102, 50008 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    S. Gehler, S. Löck, S. Shinohara, A. Bäcker, R. Ketzmerick, U. Kuhl, H.-J. Stöckmann, Phys. Rev. Lett. 115, 104101 (2015) and references thereinADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • M. Robnik
    • 1
  1. 1.CAMTP-Center for Applied Mathematics and Theoretical Physics, University of MariborMariborSlovenia

Personalised recommendations