The European Physical Journal Special Topics

, Volume 225, Issue 6–7, pp 921–941

Nonlinear dynamics and the nano-mechanical control of electrons in crystalline solids

Nano-mechanical control of electrons
Review Session A: Reviews
  • 41 Downloads
Part of the following topical collections:
  1. Mathematical Modeling of Complex Systems

Abstract

Under the umbrella of nano-mechanical control of electrons in crystalline solids, provided here are i) a discussion of aspects of the influence of static piezoelectricity on semiconductors, ii) a description of electron surfing on traveling piezopotentials/surface acoustic waves, iii) comments on the role of solitons in (dopable) polymer conductors/synthetic metals, and iv) the major component of these notes, a discussion of basic aspects of lattice solitons and discrete breathers permitting to understand genuine electron surfing on nanosolitons. This surfing offers a form of long range, fast and robust transport process in crystalline solids. The particular case of the undopable highly crystalline polydiacetylene polymer serves to illustrate the invention of a novel solectron field effect transistor (SFET).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.G. Velarde, J. Computat. App. Math. 233, 1432 (2010)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M.J. Hoskins, H. Morko, B.J. Hunsinger, Appl. Phys. Lett. 41, 332 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    W.J. Tanski, S.W. Merritt, R.N. Sacks, D.E. Cullen, E.J. Branciforte, R.D. Caroll, T.C. Eschrich, Appl. Phys. Lett. 52, 18 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    A.O. Govorov, A.V. Kalameitsev, M. Rotter, A. Wixforth, J.P. Kotthaus, K.-H. Hoffmann, N. Botkin, Phys. Rev. B 62, 2659 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    A. Wixforth, J.P. Kotthaus, G. Weimann, Phys. Rev. Lett. 56, 2104 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    M. Rotter, A.V. Kalameitsev, A.O. Govorov, W. Ruile, A. Wixforth, Phys. Rev. Lett. 82, 2171 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    M. Streibl, A. Wixforth, J.P. Kotthaus, A.O. Govorov, C. Kadow, A.C. Gossard, Appl. Phys. Lett. 75, 4139 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    S. Völk, F.J.R. Schülein, F. Knall, D. Reuter, A.D. Wieck, T.A. Truong, H. Kim, P.M. Petroff, A. Wixforth, H.J. Krenner, Nano Lett. 10, 3399 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    F.J.R. Schülein, K. Müller, M. Bichler, G. Koblmüller, J.J. Finley, A. Wixforth, H.J. Krenner, Phys. Rev B 88, 085307 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A.D. Wieck, L. Saminadayar, C. Bäuerle, T. Meunier, Nature 477, 435 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    R.P.G. McNeil, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, Nature 477, 439 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    B. Bertrand, S. Hermelin, P.A. Mortemousque, S. Tanaka, M. Yamamoto, S. Tarucha, A. Ludwig, A.D. Wieck, C. Bäuerle, T. Meunier [arXiv:1601.02485] [cond-mat.mes-hall]
  13. 13.
    A. Oliner (ed.), Acoustic Surface Waves (Springer, Berlin, 1978)Google Scholar
  14. 14.
    A.P. Mayer, Phys. Reports 256, 237 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    V.I. Nayanov, JETP Lett. 44, 314 (1986)ADSGoogle Scholar
  16. 16.
    P. Hess, Phys. Today 55, 42 (2002)CrossRefGoogle Scholar
  17. 17.
    A.M. Lomonosov, P. Hess, A.P. Mayer, Phys. Rev. Lett. 88, 076104 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    A. Kolomenskii, V.A. Lioubimov, S.N. Jerebtsov, H.A. Schuessler, Rev. Sci. Instr. 74, 448 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    C. Eckl, A.S. Kovalev, A.P. Mayer, A.M. Lomonosov, P. Hess, Phys. Rev. E 70, 046604 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    A. Ranciaro Neto, M.O. Sales, F.A.B.F. de Moura, Solid State Commun. 229, 22 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Z.L. Wang, Piezotronics and Piezo-Phototronics (Springer, Berlin, 2012)Google Scholar
  22. 22.
    Y. Hu, Z.L. Wang, Nano Energy 14, 3 (2015)CrossRefGoogle Scholar
  23. 23.
    Y. Liu, Y. Zhang, Q. Yang, S. Niu, Z.L. Wang, Nano Energy 14, 257 (2015)CrossRefGoogle Scholar
  24. 24.
    X. Wen, W. Wu, C. Pan, Y. Hu, Q. Yang, Z.L. Wang, Nano Energy 14, 276 (2015)CrossRefGoogle Scholar
  25. 25.
    S.V. Dmitriev, E.A. Korzinova, Yu.A. Baimova, M.G. Velarde, Phys. Uspekhi 59, 446 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    M.A. Migliorato, J. Pal, R. Garg, G. Tse, H.Y.S. Al-Zahrani, U. Monteverde, S. Tomic, C.-K. Li, Y.-R. Wu, B.G. Crutchley, I.P. Marko, S.J. Sweeney, AIP Conf. Procs. 1590, 32 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    R. Gausmann, W. Seemann, PAMM Proc. Appl. Math. Mech. 2, 64 (2003)CrossRefGoogle Scholar
  28. 28.
    G. Bester, X. Wu, D. Vanderbilt, A. Zunger, Phys. Rev. Lett. 96, 187602 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    G. Bester, A. Zunger, X. Wu, D. Vanderbilt, Phys. Rev. B 74, 081305 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    R. Tao, G. Ardila, L. Montes, M. Mouis, Nano Energy 14, 62 (2015)CrossRefGoogle Scholar
  31. 31.
    S.C. Stanton, A. Erturk, B.P. Mann, D.J. Inman, J. Appl. Phys. 108, 074903 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Physica D 239, 640 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    M.A. Migliorato, D. Powell, A.G. Cullis, T. Hammerschmidt, G.P. Srivastava, Phys. Rev. B 74, 245332 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    R. Garg, A. Hüe, V. Haxha, T. Hammerschmidt, G.P. Srivastava, Appl. Phys. Lett. 95, 041912 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    J. Pal, G. Tse, V. Haxha, Phys. Rev. B 84, 085211 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    H.Y.S. Al-Zahrani, J. Pal, M.A. Migliorato, Nano Energy 2, 1214 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Pal, M.A. Migliorato, C.-K. Li, Y.-R. Wu, B.G. Crutchley, I.P. Marko, S.J. Sweeney, J. Appl. Phys. 114, 073104 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    G. Tse, J. Pal, U. Monteverde, R. Gang, V. Haxha, M.A. Migliorato, S. Tomic, J. Appl. Phys. 114, 073515 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Fan, X. Ji, X. Liu, P. Cai, Wave Motion 51, 798 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    F. Xue, L. Zhang, X. Feng, G. Hu, F.R. Fan, X. Wen, L. Zheng, Z.L. Wang, Nano Res. 8, 2390 (2015)CrossRefGoogle Scholar
  41. 41.
    A.R. Hutson, J.H. McFee, D.L. White, Phys. Rev. Lett. 7, 237 (1961)ADSCrossRefGoogle Scholar
  42. 42.
    R.W. Smith, Phys. Rev. Lett. 9, 87 (1962)ADSCrossRefGoogle Scholar
  43. 43.
    J.H. McFee, J. Appl. Phys. 34, 1548 (1963)ADSCrossRefGoogle Scholar
  44. 44.
    R. Abe, Prog. Theor. Phys. 31, 957 (1964)ADSCrossRefGoogle Scholar
  45. 45.
    M. Toda, Theory of Nonlinear Lattices, 2nd. edn. (Springer, Berlin, 1989)Google Scholar
  46. 46.
    V.I. Nekorkin, M.G. Velarde, Synergetic Phenomena in Active Lattices. Patterns, Waves, Solitons, Chaos (Springer, Berlin, 2002)Google Scholar
  47. 47.
    T. Dauxois, M. Peyrard, Physics of solitons (Cambridge University Press, Cambridge, 2006)Google Scholar
  48. 48.
    R.M. White, F.W. Volmer, Appl. Phys. Lett. 7, 314 (1965)ADSCrossRefGoogle Scholar
  49. 49.
    H. Shirakawa, in I. Grethe (ed.), Nobel Lectures, Chemistry 1996–2000 (World Scientific, Singapore, 2003)Google Scholar
  50. 50.
    A.G. MacDiarmid, edited by I. Grethe, Nobel Lectures, Chemistry 1996–2000 (World Scientific, Singapore, 2003)Google Scholar
  51. 51.
    A.J. Heeger, edited by I. Grethe, Nobel Lectures, Chemistry 1996–2000 (World Scientific, Singapore, 2003)Google Scholar
  52. 52.
    A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988) (and references therein)ADSCrossRefGoogle Scholar
  53. 53.
    S. Roth, H. Bleier, Adv. Phys. 36, 385 (1987)ADSCrossRefGoogle Scholar
  54. 54.
    L. Yu (Ed.), Solitons & Polarons in Conducting Polymers (World Scientific, Singapore, 1988)Google Scholar
  55. 55.
    N. Greenhamy R.H. Friend, edited by H. Ehrereich, F. Spaepen, Solid State Physics, Vol. 49, 1 (Academic Press, San Diego, 1995)Google Scholar
  56. 56.
    H.S. Nalwa (ed.), Handbook of Nanostrutured Materials and Nanotechnology, Vol. 5: Organics, polymers, and biological materials (Academic Press, San Diego, 2000)Google Scholar
  57. 57.
    N. Tessler, Y. Preezant, N. Rappaport, Y. Roichman, Adv. Mater. 21, 2741 (2009)CrossRefGoogle Scholar
  58. 58.
    J.-L. Bredas, S.R. Marder (ed.), The WSPC Reference on Organic Electronics: Organic Semiconductors, vol. 1 Basic concepts, Vol. 2 Fundamental aspects of materials and applications (World Scientific, Singapore, 2015)Google Scholar
  59. 59.
    S. Kivelson, D.E. Heim, Phys. Rev. B 26, 4278 (1982)ADSCrossRefGoogle Scholar
  60. 60.
    C.K. Chiang, C.R. Fincher Jr., Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977)ADSCrossRefGoogle Scholar
  61. 61.
    J. Tsukamoto, A. Takahashi, K. Kawasaki, Japan J. Appl. Phys. 29, 125 (1990)ADSCrossRefGoogle Scholar
  62. 62.
    N.F. Mott, Metal-Insulator Transitions, 2nd. edn. (Taylor & Francis, London, 1990), p. 50Google Scholar
  63. 63.
    B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984), ch. 9Google Scholar
  64. 64.
    A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. B 88, 202 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    M.G. Velarde, W. Ebeling, A.P. Chetverikov, Int. J. Bifurcation Chaos 15, 245 (2005)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    A.P. Chetverikov, W. Ebeling, M.G. Velarde, Int. J. Bifurcation Chaos 16, 1613 (2006)MathSciNetCrossRefGoogle Scholar
  67. 67.
    A. Ovchinnikov, Soviet Phys. JETP 30, 147 (1970)ADSGoogle Scholar
  68. 68.
    S. Barisic, Phys. Rev. B 5, 932 (1972)ADSCrossRefGoogle Scholar
  69. 69.
    A.S. Dolgov, Sov. Phys. Solid State 28, 907 (1986)Google Scholar
  70. 70.
    A. Sievers, S. Takeno, Phys. Rev. Lett. 61, 970 (1988)ADSCrossRefGoogle Scholar
  71. 71.
    J.B. Page, Phys. Rev. B 41, 7835 (1990)ADSCrossRefGoogle Scholar
  72. 72.
    S.A. Kiselev, S.R. Bickham, A.J. Sievers, Phys. Rev. B 48, 13508 (1993)ADSCrossRefGoogle Scholar
  73. 73.
    G.P. Tsironis, Chaos 13, 657 (2003)ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    D.K. Campbell, S. Flach, Yu.S. Kivshar, Phys. Today 57, 43 (2004) (and references therein)ADSCrossRefGoogle Scholar
  75. 75.
    G. Iooss, G. James, Chaos 15, 015113 (2005)ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    S. Aubry, Physica D 216, 1 (2006)ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    S. Flach, A. Gorbach, Phys, Rep. 467, 1 (2008) (and references therein)CrossRefGoogle Scholar
  78. 78.
    A.A. Kistanov, S.V. Dmitriev, A.P. Chetverikov, M.G. Velarde, Eur. Phys. J B 87, 211 (2014)ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    S. Dmitriev, A.P. Chetverikov, M.G. Velarde, Physica Status Solidi (b) 252, 1682 (2015)ADSCrossRefGoogle Scholar
  80. 80.
    M.G. Velarde, A.P. Chetverikov, W. Ebeling, S.V. Dmitriev, V.D. Lakhno, Procs. Estonian Acad. Sci. 64, 396 (2015)CrossRefGoogle Scholar
  81. 81.
    J.C. Slater, Quantum Theory of Molecules and Solids, Vol. 4 (McGraw-Hill, New York, 1974)Google Scholar
  82. 82.
    J.P. Launay, M. Verdaguer, Electrons in Molecules (Oxford University Press, Oxford, 2014)Google Scholar
  83. 83.
    A.S. Davydov, Solitons in Molecular Systems, 2nd. edn (Reidel, Dordrecht, 1991)Google Scholar
  84. 84.
    P.L. Christiansen, A.C. Scott (eds.), Davydov’s Soliton Revisited. Self-trapping of Vibrational Energy in Protein (Plenum Press, New York, 1990)Google Scholar
  85. 85.
    A.C. Scott, Phys. Rep. 217, 1 (1992)ADSCrossRefGoogle Scholar
  86. 86.
    D. Hennig, A.P. Chetverikov, M.G. Velarde, W. Ebeling, Phys. Rev. E 76, 046602 (2007)ADSCrossRefGoogle Scholar
  87. 87.
    M.G. Velarde, W. Ebeling, A.P. Chetverikov, Int. J. Bifurcation Chaos 18, 3815 (2008)ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    O.G. Cantu-Ross, L. Cruzeiro, M.G. Velarde, W. Ebeling, Eur. Phys. J. B 80, 545 (2011)ADSCrossRefGoogle Scholar
  89. 89.
    A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. B 85, 291 (2012)ADSCrossRefGoogle Scholar
  90. 90.
    A.P. Chetverikov, W. Ebeling, G. Röpke, M.G. Velarde, Eur. Phys. J. B 87, 153 (2014)ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    M.G. Velarde, A.P. Chetverikov, W. Ebeling, E.G. Wilson, Eur. Phys. Lett. EPL 106, 27004 (2014)ADSCrossRefGoogle Scholar
  92. 92.
    K.J. Donovan, E.G. Wilson, Phil. Mag. B 44, 9 and 31 (1981)Google Scholar
  93. 93.
    K.J. Donovan, P.D. Freeman, E.G. Wilson, J. Phys. C: Solid State Phys. 18, L275 (1985)ADSCrossRefGoogle Scholar
  94. 94.
    K.J. Donovan, E.G. Wilson, J. Phys.: Condens. Matter 2, 1659 (1990)ADSGoogle Scholar
  95. 95.
    K. Donovan, J.W.P. Elkins, E.G. Wilson, J. Phys.: Condens. Matter 3, 2075 (1991)ADSGoogle Scholar
  96. 96.
    E.G. Wilson, J. Phys. C: Solid State Phys. 16, 6739 (1983)ADSCrossRefGoogle Scholar
  97. 97.
    A.M. Kosevich, A.S. Kovalev, Soviet Phys. JETP 40, 891 (1975)ADSGoogle Scholar
  98. 98.
    J.S. Zmuidzinas, Phys. Rev. B 17, 3919 (1978)ADSCrossRefGoogle Scholar
  99. 99.
    A.V. Zolotaryuk, K.H. Spatschek, A.V. Savin, Phys. Rev. B 54, 266 (1996)ADSCrossRefGoogle Scholar
  100. 100.
    M.G. Velarde, L. Brizhik, A.P. Chetverikov, L. Cruzeiro, W. Ebeling, G. Röpke, Int. J. Quantum Chem. 112, 551 and 2591 (2012)CrossRefGoogle Scholar
  101. 101.
    L. Brizhik, A.P. Chetverikov, W. Ebeling, G. Röpke, M.G. Velarde, Phys. Rev. B 85, 245105 (2012)ADSCrossRefGoogle Scholar
  102. 102.
    R. Landauer, IBM J. Res. Dev. 5, 183 (1961) [reprinted 44, 261 (2000)]MathSciNetCrossRefGoogle Scholar
  103. 103.
    J.A. Vaccaro, S.M. Barnett, Proc. Roy. Soc. A 467, 1770 (2011)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  1. 1.Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII 1MadridSpain

Personalised recommendations