Skip to main content
Log in

Analysis of concrete targets with different kinds of reinforcements subjected to blast loading

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper we describe an experimental campaign carried out to study and analyse the behaviour of concrete slabs when subjected to blast loading. Four different types of concrete have been tested: normal strength concrete with steel rebar, normal strength concrete with steel rebar retrofitted with Kevlar coating, steel fibre reinforced concrete (SFRC) and polypropylene fibre reinforced concrete (PFRC). The major asset of the experimental setup used is that it allows to subject up to four specimens to the same blast load what, besides being cost effective, makes possible to have a measure of the experimental scatter. The results of SFRC and PFRC concretes have been analysed by using a previously developed material model for the numerical simulation of concrete elements subjected to blast. The experimental campaign and preliminary results of this numerical analysis show how the high strain rates, in spite of improving the mechanical properties of these kinds of fibre reinforced concretes, lead to an embrittlement of the material, which may be dangerous from the point of view of the structural behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.O. Dusenberry, Handbook for Blast Resistant Design of Buildings (NJ: John Willey & Sons Inc., 2010)

  2. L.J. Malvar, J.E. Crawford, Dynamic Increase Factors for Concrete, 28th DDESB Seminar (Orlando, FL, 1998)

  3. J. Magnusson, M. Hallgren, A. Ansell, Mag. Concrete Res. 62, 127 (2010)

    Article  Google Scholar 

  4. G. Morales-Alonso, Experimental and Numerical Analysis of Reinforced Concrete Elements Subjected to Blast Loading, Ph.D. Thesis, Universidad Politécnica de Madrid, 2013, p. 224

  5. J.E. Crawford, L.J. Malvar, Retrofit of structural components and systems, Blast Resistant Design of Buildings (Chap. 17), edited by D.O. Dusemberry (2010)

  6. B. Ellingwood, Special Issue J. Perform. Constr. Facil. 20, 315 (2006)

    Article  Google Scholar 

  7. C. Pearson, N. Dellate, J. Perform. Constr. Facil. 19(2), 172 (2005)

    Article  Google Scholar 

  8. L. Mao, S. Barnett, D. Begg, G. Schleyer, G. Wight, Int. J. Impact Eng. 64, 91 (2014)

    Article  Google Scholar 

  9. S. Astarlioglu, T. Krauthammer, Eng. Struct. 61, 1 (2014)

    Article  Google Scholar 

  10. C.P. Pantelides, T.T. Garfield, W.D. Richins, T.K. Larson, J.E. Blakeley, Eng. Struct. 76, 24 (2014)

    Article  Google Scholar 

  11. G. Morales-Alonso, D.A. Cendón, F. Gálvez, B. Erice, V. Sánchez-Gálvez, J. Appl. Mech. 78(5), 10.1115 (2011)

    Google Scholar 

  12. G. Morales-Alonso, D.A. Cendón, F. Gálvez, V. Sánchez-Gálvez, Fracture of Concrete Structural Members Subjected to Blast, 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Spain (FraMCoS 8) (2013)

  13. J.M. Sancho, J. Planas, D.A. Cendón, J.C. Reyes, J.C. Gálvez, D.A. Cendón, Int. J. Numer. Anal. Meth. Geomech. 31, 173 (2007b)

    Article  Google Scholar 

  14. J.M. Sancho, J. Planas, A.M. Fathy, J.C. Gálvez, J. Eng. Fract. Mech. 74, 75 (2007a)

    Article  Google Scholar 

  15. A. Hillerborg, M. Modeer, P. Petersson, Cem. And Concr. Res. 6, 773 (1976)

    Article  Google Scholar 

  16. J. Planas, M. Elices, G.V. Guinea, F.J. Gómez, D.A. Cendón, I. Arbilla, Eng. Fract. Mech. 70, 1759 (2003)

    Article  Google Scholar 

  17. J. Oliver, Int. J. Numer. Methods Eng. 39, 3575 (1996)

    Article  Google Scholar 

  18. M. Jirásek, Comput. Methods Appl. Mech. Eng. 188, 307 (2000)

    Article  ADS  Google Scholar 

  19. G.F. Kinney, K.J. Graham, Explosive shocks in air, 2nd ed. (Springer-Verlag, New York, 1985)

  20. C.A. Ross, J.W. Tedesco, S.T. Kuennen, ACI Mater. J. 92, 37 (1995)

    Google Scholar 

  21. Comité Euro-International du Béton, Bulletin d’ Information 187. Concr. struct. under impact and impulsive loading (CEB, Dubrovnik, 1988)

  22. Comité Euro-International du Béton, Model Code 2010, FIB (2012)

  23. J. Weerheijm, Van Doormaal, Int. J. Impact Eng. 34, 609 (2007)

    Article  Google Scholar 

  24. D.L. Birkimer, R. Lindeman. Suplement to Title 68-8. ACI Journal (1971)

  25. A.J. Zielinski, H.W. Reinhardt, Cem. Concr. Res. 12(3), 309 (1982)

    Article  Google Scholar 

  26. A. Brara, J.R. Klepaczko, Int. J. Impact Eng. 34, 424 (2007)

    Article  Google Scholar 

  27. H. Schuler, C. Mayrhofer, K. Thoma, Int. J. Impact Eng. 32, 1635 (2006)

    Article  Google Scholar 

  28. J.C.A.M. Van Dormal, J. Weerheijm, L.G. Sluys. J. Phys. IV. (France) (1994)

  29. F. Toutlemonde, P. Rossi, C. Boulay, C. Gourraud, D. Guedeon, Mats. Struct. 28, 293 (1995)

    Article  Google Scholar 

  30. S.G. Millard, Int. J. Imp. Eng. 37(4), 405 (2009)

    Article  Google Scholar 

  31. P.E. Petersson, Crack growth and Developement of Fracture Zones in PlainConcrete and Similar Materials, Report No. TVBM-1006, Lund Inst. of Tech. (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Cendón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oña, M., Morales-Alonso, G., Gálvez, F. et al. Analysis of concrete targets with different kinds of reinforcements subjected to blast loading. Eur. Phys. J. Spec. Top. 225, 265–282 (2016). https://doi.org/10.1140/epjst/e2016-02633-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-02633-8

Keywords

Navigation