Configurable NOR gate arrays from Belousov-Zhabotinsky micro-droplets

Abstract

We investigate the Belousov–Zhabotinsky (BZ) reaction in an attempt to establish a basis for computation using chemical oscillators coupled via inhibition. The system consists of BZ droplets suspended in oil. Interdrop coupling is governed by the non-polar communicator of inhibition, Br2. We consider a linear arrangement of three droplets to be a NOR gate, where the center droplet is the output and the other two are inputs. Oxidation spikes in the inputs, which we define to be TRUE, cause a delay in the next spike of the output, which we read to be FALSE. Conversely, when the inputs do not spike (FALSE) there is no delay in the output (TRUE), thus producing the behavior of a NOR gate. We are able to reliably produce NOR gates with this behavior in microfluidic experiment.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H.M. Sheffer, Trans. Am. Math. Soc. 14, 481 (1913)

    MathSciNet  Article  Google Scholar 

  2. 2.

    A. Tamsir, J.J. Tabor, C. A. Voigt, Nature 469, 212 (2011)

    ADS  Article  Google Scholar 

  3. 3.

    L. Qian, E. Winfree, Science 332, 1196 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    A. Adamatzky, B.D.L. Costello, T. Asai, Reaction-Diffusion Computers (Elsevier, 2005)

  5. 5.

    Q. Liu, L. Wang, A.G. Frutos, A.E. Condon, R.M. Corn, L.M. Smith, Nature 403, 175 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    M. Ogihara, A. Ray, Algorithmica 25, 239 (1999)

    MathSciNet  Article  Google Scholar 

  7. 7.

    L. Qian, E. Winfree, J. Bruck, Nature 475, 368 (2011)

    Article  Google Scholar 

  8. 8.

    A. Adamatzky, B. de Lacy Costello, T. Shirakawa, IJBC 18, 2373 (2008)

    ADS  MathSciNet  Google Scholar 

  9. 9.

    S. Tsuda, M. Aono, Y.-P. Gunji, BioSystems 73, 45 (2004)

    Article  Google Scholar 

  10. 10.

    D. Lebender, F. Schneider, J. Phys. Chem. 98, 7533 (1994)

    Article  Google Scholar 

  11. 11.

    A. Tóth, K. Showalter, J. Chem. Phys. 103, 2058 (1995)

    ADS  Article  Google Scholar 

  12. 12.

    A. Hjelmfelt, E.D. Weinberger, J. Ross, Proc. Natl. Acad. Sci. U.S.A. 88, 10983 (1991)

    ADS  Article  Google Scholar 

  13. 13.

    A. Adamatzky, J. Holley, P. Dittrich, J. Gorecki, B.D.L. Costello, K.-P. Zauner, L. Bull, BioSystems 109, 72 (2012)

    Article  Google Scholar 

  14. 14.

    F. Muzika, L. Schreiberová, I. Schreiber, R. Soc. Chem. Adv. 4, 56165 (2014)

    Google Scholar 

  15. 15.

    M. Toiya, H.O. González-Ochoa, V.K. Vanag, S. Fraden, I.R. Epstein, J. Phys. Chem. Let. 1, 1241 (2010)

    Article  Google Scholar 

  16. 16.

    N. Tompkins, N. Li, C. Girabawe, M. Heymann, G.B. Ermentrout, I.R. Epstein, S. Fraden, Proc. Natl. Acad. Sci. U.S.A. 111, 4397 (2014)

    ADS  Article  Google Scholar 

  17. 17.

    B.P. Belousov, Compil. Abstr. Radiat. Med. 147, 1 (1959)

    Google Scholar 

  18. 18.

    H. Fukuda, H. Morimura, S. Kai, Physica D 205, 80 (2005)

    ADS  Article  Google Scholar 

  19. 19.

    F. Sagués, I.R. Epstein, Dalton Trans. 7, 1201 (2003)

    Article  Google Scholar 

  20. 20.

    J. Holley, A. Adamatzky, L. Bull, B.D.L. Costello, I. Jahan, Nano Commun. Netw. 2, 50 (2011)

    Article  Google Scholar 

  21. 21.

    O. Steinbock, P. Kettunen, K. Showalter, J. Phys. Chem. 100, 18970 (1996)

    Article  Google Scholar 

  22. 22.

    M. Heymann, K.I. Harrington, J.B. Pollack, S. Fraden, in Proceedings of the Twelfth International Conference on the Simulation and Synthesis of Living Systems, 2010, edited by H. Fellermann, M. Dörr, M.M. Hanczyc, L.L. Laursen, S. Maurer, D. Merkle, P.-A. Monnard, K. Støy, S. Rasmussen (MIT Press, Cambridge, 2010), p. 166

  23. 23.

    P.L. Gentili, V. Horvath, V.K. Vanag, I.R. Epstein, Int. J. Unconv. Comput. 8, 177 (2012)

    Google Scholar 

  24. 24.

    J. Delgado, N. Li, M. Leda, H.O. González-Ochoa, S. Fraden, I.R. Epstein, Soft Matter 7, 3155 (2011)

    ADS  Article  Google Scholar 

  25. 25.

    C. Holtze, A.C. Rowat, J.J. Agresti, J.B. Hutchison, F.E. Angile, C.H.J. Schmitz, S. Koster, H. Duan, K.J. Humphry, R.A. Scanga, J.S. Johnson, D. Pisignano, D.A. Weitz, Lab Chip 8, 1632 (2008)

    Article  Google Scholar 

  26. 26.

    N. Li, J. Delgado, H.O. González-Ochoa, I.R. Epstein, S. Fraden, Phys. Chem. Chem. Phys. 16, 10965 (2014)

    Article  Google Scholar 

  27. 27.

    V.K. Vanag, I.R. Epstein, J. Chem. Phys. 131, 104512 (2009)

    ADS  Article  Google Scholar 

  28. 28.

    A.M. Turing, Phil. Trans. R. Soc. B 237, 37 (1952)

    ADS  Article  Google Scholar 

  29. 29.

    N. Tompkins, S. Fraden, Am. J. Phys. 84, 150 (2016)

    ADS  Article  Google Scholar 

  30. 30.

    K. Kalyanasundaram, Coord. Chem. Rev. 46, 159

  31. 31.

    R.M. Noyes, R. Field, E. Körös, J. Am. Chem. Soc. 94, 1394 (1972)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Fraden.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Gold, J., Tompkins, N. et al. Configurable NOR gate arrays from Belousov-Zhabotinsky micro-droplets. Eur. Phys. J. Spec. Top. 225, 211–227 (2016). https://doi.org/10.1140/epjst/e2016-02622-y

Download citation

Keywords

  • Chaotic System
  • European Physical Journal Special Topic
  • Malonic Acid
  • Input Delay
  • HOBr