The European Physical Journal Special Topics

, Volume 225, Issue 1, pp 211–227 | Cite as

Configurable NOR gate arrays from Belousov-Zhabotinsky micro-droplets

  • A.L. Wang
  • J.M. Gold
  • N. Tompkins
  • M. Heymann
  • K.I. Harrington
  • S. Fraden
Regular Article Synchronization, Control and Dynamics of Chaotic Models
Part of the following topical collections:
  1. Synchronization and Control in Time-Delayed Complex Networks and Spatio-Temporal Patterns

Abstract

We investigate the Belousov–Zhabotinsky (BZ) reaction in an attempt to establish a basis for computation using chemical oscillators coupled via inhibition. The system consists of BZ droplets suspended in oil. Interdrop coupling is governed by the non-polar communicator of inhibition, Br2. We consider a linear arrangement of three droplets to be a NOR gate, where the center droplet is the output and the other two are inputs. Oxidation spikes in the inputs, which we define to be TRUE, cause a delay in the next spike of the output, which we read to be FALSE. Conversely, when the inputs do not spike (FALSE) there is no delay in the output (TRUE), thus producing the behavior of a NOR gate. We are able to reliably produce NOR gates with this behavior in microfluidic experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.M. Sheffer, Trans. Am. Math. Soc. 14, 481 (1913)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Tamsir, J.J. Tabor, C. A. Voigt, Nature 469, 212 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    L. Qian, E. Winfree, Science 332, 1196 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    A. Adamatzky, B.D.L. Costello, T. Asai, Reaction-Diffusion Computers (Elsevier, 2005)Google Scholar
  5. 5.
    Q. Liu, L. Wang, A.G. Frutos, A.E. Condon, R.M. Corn, L.M. Smith, Nature 403, 175 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    M. Ogihara, A. Ray, Algorithmica 25, 239 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Qian, E. Winfree, J. Bruck, Nature 475, 368 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Adamatzky, B. de Lacy Costello, T. Shirakawa, IJBC 18, 2373 (2008)ADSMathSciNetGoogle Scholar
  9. 9.
    S. Tsuda, M. Aono, Y.-P. Gunji, BioSystems 73, 45 (2004)CrossRefGoogle Scholar
  10. 10.
    D. Lebender, F. Schneider, J. Phys. Chem. 98, 7533 (1994)CrossRefGoogle Scholar
  11. 11.
    A. Tóth, K. Showalter, J. Chem. Phys. 103, 2058 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    A. Hjelmfelt, E.D. Weinberger, J. Ross, Proc. Natl. Acad. Sci. U.S.A. 88, 10983 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    A. Adamatzky, J. Holley, P. Dittrich, J. Gorecki, B.D.L. Costello, K.-P. Zauner, L. Bull, BioSystems 109, 72 (2012)CrossRefGoogle Scholar
  14. 14.
    F. Muzika, L. Schreiberová, I. Schreiber, R. Soc. Chem. Adv. 4, 56165 (2014)Google Scholar
  15. 15.
    M. Toiya, H.O. González-Ochoa, V.K. Vanag, S. Fraden, I.R. Epstein, J. Phys. Chem. Let. 1, 1241 (2010)CrossRefGoogle Scholar
  16. 16.
    N. Tompkins, N. Li, C. Girabawe, M. Heymann, G.B. Ermentrout, I.R. Epstein, S. Fraden, Proc. Natl. Acad. Sci. U.S.A. 111, 4397 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    B.P. Belousov, Compil. Abstr. Radiat. Med. 147, 1 (1959)Google Scholar
  18. 18.
    H. Fukuda, H. Morimura, S. Kai, Physica D 205, 80 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    F. Sagués, I.R. Epstein, Dalton Trans. 7, 1201 (2003)CrossRefGoogle Scholar
  20. 20.
    J. Holley, A. Adamatzky, L. Bull, B.D.L. Costello, I. Jahan, Nano Commun. Netw. 2, 50 (2011)CrossRefGoogle Scholar
  21. 21.
    O. Steinbock, P. Kettunen, K. Showalter, J. Phys. Chem. 100, 18970 (1996)CrossRefGoogle Scholar
  22. 22.
    M. Heymann, K.I. Harrington, J.B. Pollack, S. Fraden, in Proceedings of the Twelfth International Conference on the Simulation and Synthesis of Living Systems, 2010, edited by H. Fellermann, M. Dörr, M.M. Hanczyc, L.L. Laursen, S. Maurer, D. Merkle, P.-A. Monnard, K. Støy, S. Rasmussen (MIT Press, Cambridge, 2010), p. 166Google Scholar
  23. 23.
    P.L. Gentili, V. Horvath, V.K. Vanag, I.R. Epstein, Int. J. Unconv. Comput. 8, 177 (2012)Google Scholar
  24. 24.
    J. Delgado, N. Li, M. Leda, H.O. González-Ochoa, S. Fraden, I.R. Epstein, Soft Matter 7, 3155 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    C. Holtze, A.C. Rowat, J.J. Agresti, J.B. Hutchison, F.E. Angile, C.H.J. Schmitz, S. Koster, H. Duan, K.J. Humphry, R.A. Scanga, J.S. Johnson, D. Pisignano, D.A. Weitz, Lab Chip 8, 1632 (2008)CrossRefGoogle Scholar
  26. 26.
    N. Li, J. Delgado, H.O. González-Ochoa, I.R. Epstein, S. Fraden, Phys. Chem. Chem. Phys. 16, 10965 (2014)CrossRefGoogle Scholar
  27. 27.
    V.K. Vanag, I.R. Epstein, J. Chem. Phys. 131, 104512 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A.M. Turing, Phil. Trans. R. Soc. B 237, 37 (1952)ADSCrossRefGoogle Scholar
  29. 29.
    N. Tompkins, S. Fraden, Am. J. Phys. 84, 150 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    K. Kalyanasundaram, Coord. Chem. Rev. 46, 159Google Scholar
  31. 31.
    R.M. Noyes, R. Field, E. Körös, J. Am. Chem. Soc. 94, 1394 (1972)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • A.L. Wang
    • 1
  • J.M. Gold
    • 1
  • N. Tompkins
    • 1
  • M. Heymann
    • 3
  • K.I. Harrington
    • 2
  • S. Fraden
    • 1
  1. 1.Department of PhysicsBrandeis UniversityWalthamUSA
  2. 2.Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  3. 3.Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron DESYHamburgGermany

Personalised recommendations