Skip to main content
Log in

Coupling and control in coherently driven and asymmetrically synchronized hybrid electron-nuclear spin system

  • Regular Article
  • Synchronization, Control and Dynamics of Chaotic Models
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study the coupling and control adaptation of a hybrid electron-nuclear spin system using the laser mediated proton beam in MeV energy regime. The asymmetric control mechanism is based on exact optimization of both: the measure of exchange interaction and anisotropy of the hyperfine interaction induced in the resonance with optimal channeled protons (CP) superfocused field, allowing manipulation over arbitrary localized spatial centers while addressing only the electron spin. Using highly precise and coherent proton channeling regime we have obtained efficient pulse shaping separator technique aimed for spatio-temporal engineering of quantum states, introducing a method for control of nuclear spins, which are coupled via anisotropic hyperfine interactions in isolated electron spin manifold, without radio wave (RW) pulses. The presented method can be efficiently implemented in synchronized spin networks with the purpose to facilitate preservation and efficient transfer of experimentally observed quantum particle states, contributing to the overall background noise reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Heiss (ed.), Fundamentals of Quantum Information (Springer, New York, 2002)

  2. C.H. Bennett, et al., Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. B. Blinov, D.L. Moehring, L.M. Duan, C. Monroe, Nature 428, 153 (2004)

    Article  ADS  Google Scholar 

  4. T. Wilk, S.C. Webster, A. Kuhn, G. Rempe, Science 317, 488 (2007)

    Article  ADS  Google Scholar 

  5. J. Sherson, et al., Nature 443, 557 (2006)

    Article  ADS  Google Scholar 

  6. H.J. Kimble, Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  7. M. Horodecki, P. Horodecki, R. Horodecki, in Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, Vol. 173 of Springer Tracts in Modern Physics, edited by G. Alber, et al. (Springer Verlag, Berlin, 2001), p. 151

  8. A.D. Boozer, et al., Phys. Rev. Lett. 98, 193601 (2007)

    Article  ADS  Google Scholar 

  9. V. Berec, PLoS ONE 7(9), e45254 (2012)

    Article  ADS  Google Scholar 

  10. V. Filidou, et al., Nature Phys. 8, 596 (2012)

    Article  ADS  Google Scholar 

  11. S.K. Gorman, M.A. Broome, W.J. Baker, M.Y. Simmons, Phys. Rev. B 92, 125413 (2015)

    Article  ADS  Google Scholar 

  12. A. Fang, Y.-C. Chang, J.R. Tucker, Phys. Rev. B 72, 075355 (2005)

    Article  ADS  Google Scholar 

  13. C.D. Hill, et al., Sci. Adv. 1, e1500707 (2015)

    Article  ADS  Google Scholar 

  14. Z. Kurucz, et al., Phys. Rev. Lett. 103(1), 010502 (2009)

    Article  ADS  Google Scholar 

  15. H. Wiseman, Phys. Rev. A 49, 21332150 (1994)

    Google Scholar 

  16. D. Liberzon, Switching in Systems and Control (Birkhauser, Boston, 2003)

  17. B. Gopalakrishnan, et al., Nature Mater. 8(5), 383 (2009)

    Article  Google Scholar 

  18. J.J. Morton, B.W. Lovett, Ann. Rev. Cond. Matt. Phys. 2, 189 (2011)

    Article  ADS  Google Scholar 

  19. J.S. Hodges, J.C. Yang, C. Ramanathan, D.G. Cory, Phys. Rev. A. 78(1), (2008) 010303

    Article  ADS  Google Scholar 

  20. G.W. Morley, et al., Phys. Rev. Lett. 98(22), 220501 (2007)

    Article  ADS  Google Scholar 

  21. S.A. Lee, W.M. Jr. Fairbank, Phys. Rev. A 82(4), 042515 (2010)

    Article  ADS  Google Scholar 

  22. T.D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, K.M. Itoh, Phys. Rev. B 71, 01440 (2005)

    Article  Google Scholar 

  23. P. Buek, V. Rungta, C. Caves, M.M. Hillery, G.J. Milburn, Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  25. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  26. T.C. Wei, P.M. Goldbart, Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  27. A. Mann, B.C. Sanders, W. Munro, Phys. Rev. A 51, 989 (1995)

    Article  ADS  Google Scholar 

  28. C.A. Fuchs, Phys. Rev. Lett. 79, 1162 (1997)

    Article  ADS  Google Scholar 

  29. S. Hill, W.K. Wooters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  30. C.M. Caves, C.A. Fuchs, P. Rungta, Found. Phys. Lett. 14(3), 199 (2001)

    Article  MathSciNet  Google Scholar 

  31. W.K. Wootters, Quant. Inf. Comput. 1(1), 27 (2001)

    MathSciNet  Google Scholar 

  32. W.J. Munro, D.F.V. James, A.G. White, P.G. Kwiat, Phys. Rev. A 64, 030302 (2001)

    Article  ADS  Google Scholar 

  33. R.F. Werner, Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  34. D.S. Gemmell, Rev. Mod. Phys. 46, 129 (1974)

    Article  ADS  Google Scholar 

  35. S.L. Chang, et al., Phys. Rev. Lett. 94, 174801 (2005)

    Article  ADS  Google Scholar 

  36. K.D. Liss, et al., Nature 404(6776), 371 (2000)

    Article  ADS  Google Scholar 

  37. E. Tsyganov, A. Taratin, Nucl. Instr. Meth. Phys. Res. A 363, 511 (1995)

    Article  ADS  Google Scholar 

  38. M. Motapothula, et al., Phys. Rev. Lett. 108, 195502 (2012)

    Article  ADS  Google Scholar 

  39. V. Berec, Laser Part. Beams 33(01), 1 (2015)

    Article  ADS  Google Scholar 

  40. V. Berec, et al., Nucl. Instr. Meth. B 355, 324 (2015)

    Article  ADS  Google Scholar 

  41. A. Castro, I.V. Tokatly, Phys. Rev A 84, 033410 (2011)

    Article  ADS  Google Scholar 

  42. X. Wang, L. Bishop, S. Kestner, J.P. Barnes, E.K. Sun, S.S. Das, Nat. Commun. 3, 997 (2012)

    Article  ADS  Google Scholar 

  43. H. Bluhm, et al., Nature Phys. 7(2), 109 (2010)

    Article  ADS  Google Scholar 

  44. P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Oxford: Clarendon Press, 1993)

  45. U. Leonhardt, H. Paul, G.M.D. Ariano, Phys. Rev. A 52, 6 (1995)

    Article  Google Scholar 

  46. A. Uhlmann, Rep. Math. Phys. 9, 273 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  47. G.G. Gillett, et al., Phys. Rev. Lett. 104, 080503 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Berec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berec, V. Coupling and control in coherently driven and asymmetrically synchronized hybrid electron-nuclear spin system. Eur. Phys. J. Spec. Top. 225, 197–209 (2016). https://doi.org/10.1140/epjst/e2016-02621-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-02621-0

Keywords

Navigation