The European Physical Journal Special Topics

, Volume 225, Issue 15–16, pp 2935–2956 | Cite as

Few-body interactions in frozen Rydberg gases

Review Rydberg Few-Body Physics
Part of the following topical collections:
  1. Cooperativity and Control in Highly Excited Rydberg Ensembles – Achievements of the European Marie Curie ITN COHERENCE

Abstract

The strong dipole-dipole coupling and the Stark tunability make Förster resonances an attractive tool for the implementation of quantum gates. In this direction a generalization to a N-body process would be a powerful instrument to implement multi-qubit gate and it will also path the way to the understanding of many-body physics. In this review, we give a general introduction on Förster resonances, also known as two-body FRET, giving an overview of the different application in quantum engineering and quantum simulation. Then we will describe an analogous process, the quasi-forbidden FRET, which is related to the Stark mixing due to the presence of an external electric field. We will then focus on its use in a peculiar four-body FRET. The second part of this review is focused on our study of few-body interactions in a cold gas of Cs Rydberg atoms. After a detailed description of a series of quasi-forbidden resonances detected in the proximity of an allowed two-body FRET we will show our most promising result: the observation of a three-body FRET. This process corresponds to a generalization of the usual two-body FRET, where a third atom serves as a relay for the energy transport. This relay also compensates for the energy mismatch which prevents a direct two-body FRET between the donor and the acceptor, but on the other side allowed a three-body process; for this reason, the three-body FRET observed is a “Borromean” process. It can be generalized for any quantum system displaying two-body FRET from quasi-degenerate levels. We also predict N-body FRET, based on the same interaction scheme. Three-body FRET thus promises important applications in the formation of macro-trimers, implementation of few-body quantum gates, few-body entanglement or heralded entanglement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Monroe, Nature 416, 238 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    H. Weimer, et al., Nat. Phys. 6, 382 (2010)CrossRefGoogle Scholar
  3. 3.
    P. Schauß, et al., Science 347, 1455 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    M. Saffman, T.G. Walker, K. Mölmer, Rev. Mod. Phys. 82, 2313 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    D. Comparat, P. Pillet, J. Opt. Soc. Am. B 27, A208 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    E. Urban, et al., Nat. Phys. 5, 110 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Gaëtan, et al., Nat. Phys. 5, 115 (2009)CrossRefGoogle Scholar
  8. 8.
    T. Wilk, et al., Phys. Rev. Lett. 104, 010502 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    L. Isenhower, et al. Phys. Rev. Lett. 104, 010503 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    K. A. Safinya, et al., Phys. Rev. Lett. 47, 405 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    T. G. Walker, M. Saffman, J. Phys. B: At. Mol. Phys. 38, 309 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    T. Förster, Ann. Phys. 437, 55 (1948)CrossRefGoogle Scholar
  13. 13.
    F. Perrin, Ann. Phys. 17, 283 (1932)Google Scholar
  14. 14.
    E. Collini, et al., Nature 463, 644 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M. A. Oar, et al., Chem. Mater. 18, 3682 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Ajayaghosh, V.K. Praveen, C. Vijayakumar, Chem. Soc. Rev. 37, 109 (2007)CrossRefGoogle Scholar
  17. 17.
    G. Günter, et al., Science 342, 954 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    D. Barredo, et al., Phys. Rev. Lett. 114, 113002 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    I. Mourachko, et al., Phys. Rev. Lett. 80, 253 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    W.R. Anderson, J.R. Veale, T.F. Gallagher, Phys. Rev. Lett. 80, 249 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    I.I. Ryabtsev, et al., Phys. Rev. Lett. 104, 073003 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    S. Ravets, et al., Nat. Phys. 10, 914 (2014)CrossRefGoogle Scholar
  23. 23.
    J.H. Gurian, et al., Phys. Rev. Lett. 108, 023005 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    M. Viteau, et al., Phys. Rev. A 78, 040704(R) (2008)ADSCrossRefGoogle Scholar
  25. 25.
    T. Vogt, et al., Phys. Rev. Lett. 97, 083003 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    M.J. Renn, W.R. Anderson, T.F. Gallagher, Phys. Rev. A 58, 1324 (1994)Google Scholar
  27. 27.
    R. Kachru, et al., Phys. Rev. A 28, 2676 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    B. Pelle, et al., Phys. Rev. A 93, 023417 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    P. Goy, et al., Phys. Rev. A 26, 2733 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    C.S.E. van Ditzhuijzen, PhD Thesis, van der Waals-Zeeman Institute Amsterdam, 2009Google Scholar
  31. 31.
    W. Li, P.J. Tanner, T.F. Gallagher, Phys. Rev. Lett. 94, 173001 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    A. Schwettmann, et al., Phys. Rev. A 74, 020701 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    J. Stanojevic, et al., Phys. Rev. A 78, 052709 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    J. Deiglmayr, et al., Phys. Rev. Lett. 113, 193001 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    M.L. Zimmerman, et al., Phys. Rev. A 20, 2251 (1979)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    B.T. Torosov, N.V. Vitanov, J. Phys. B: At. Mol. Opt. Phys. 45, 135502 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990)Google Scholar
  38. 38.
    T. Kraemer, et al., Nature 440, 3158 (2006)CrossRefGoogle Scholar
  39. 39.
    S.E. Pollack, D. Dries, R.G. Hulet, Science 326, 1683 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    M. Kiffner, W. Li, D. Jaksch, Phys. Rev. Lett. 111, 233003 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    T.F. Gallagher, Rydberg Atoms (Cambridge University Press, 1994)Google Scholar
  42. 42.
    R. Faoro, et al., Nat. Commun. 6, 8173 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    M.T. Yamashita, et al., Phys. Rev. A 81, 063607 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    H. Bernien, et al., Nature 497, 86 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    B. Casabone, et al., Phys. Rev. Lett. 111, 100505 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2016

Authors and Affiliations

  • Riccardo Faoro
    • 1
    • 2
  • Bruno Pelle
    • 1
  • Alexandre Zuliani
    • 1
  1. 1.Laboratoire Aimé Cotton, Université Paris-Sud, ENS Cachan, CNRS, Université Paris-SaclayOrsay CedexFrance
  2. 2.Università di PisaPisaItaly

Personalised recommendations