Skip to main content
Log in

Few-body interactions in frozen Rydberg gases

  • Review
  • Rydberg Few-Body Physics
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The strong dipole-dipole coupling and the Stark tunability make Förster resonances an attractive tool for the implementation of quantum gates. In this direction a generalization to a N-body process would be a powerful instrument to implement multi-qubit gate and it will also path the way to the understanding of many-body physics. In this review, we give a general introduction on Förster resonances, also known as two-body FRET, giving an overview of the different application in quantum engineering and quantum simulation. Then we will describe an analogous process, the quasi-forbidden FRET, which is related to the Stark mixing due to the presence of an external electric field. We will then focus on its use in a peculiar four-body FRET. The second part of this review is focused on our study of few-body interactions in a cold gas of Cs Rydberg atoms. After a detailed description of a series of quasi-forbidden resonances detected in the proximity of an allowed two-body FRET we will show our most promising result: the observation of a three-body FRET. This process corresponds to a generalization of the usual two-body FRET, where a third atom serves as a relay for the energy transport. This relay also compensates for the energy mismatch which prevents a direct two-body FRET between the donor and the acceptor, but on the other side allowed a three-body process; for this reason, the three-body FRET observed is a “Borromean” process. It can be generalized for any quantum system displaying two-body FRET from quasi-degenerate levels. We also predict N-body FRET, based on the same interaction scheme. Three-body FRET thus promises important applications in the formation of macro-trimers, implementation of few-body quantum gates, few-body entanglement or heralded entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Monroe, Nature 416, 238 (2002)

    Article  ADS  Google Scholar 

  2. H. Weimer, et al., Nat. Phys. 6, 382 (2010)

    Article  Google Scholar 

  3. P. Schauß, et al., Science 347, 1455 (2015)

    Article  ADS  Google Scholar 

  4. M. Saffman, T.G. Walker, K. Mölmer, Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  5. D. Comparat, P. Pillet, J. Opt. Soc. Am. B 27, A208 (2010)

    Article  ADS  Google Scholar 

  6. E. Urban, et al., Nat. Phys. 5, 110 (2009)

    Article  Google Scholar 

  7. A. Gaëtan, et al., Nat. Phys. 5, 115 (2009)

    Article  Google Scholar 

  8. T. Wilk, et al., Phys. Rev. Lett. 104, 010502 (2010)

    Article  ADS  Google Scholar 

  9. L. Isenhower, et al. Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  Google Scholar 

  10. K. A. Safinya, et al., Phys. Rev. Lett. 47, 405 (1981)

    Article  ADS  Google Scholar 

  11. T. G. Walker, M. Saffman, J. Phys. B: At. Mol. Phys. 38, 309 (2005)

    Article  ADS  Google Scholar 

  12. T. Förster, Ann. Phys. 437, 55 (1948)

    Article  Google Scholar 

  13. F. Perrin, Ann. Phys. 17, 283 (1932)

    Google Scholar 

  14. E. Collini, et al., Nature 463, 644 (2010)

    Article  ADS  Google Scholar 

  15. M. A. Oar, et al., Chem. Mater. 18, 3682 (2006)

    Article  Google Scholar 

  16. A. Ajayaghosh, V.K. Praveen, C. Vijayakumar, Chem. Soc. Rev. 37, 109 (2007)

    Article  Google Scholar 

  17. G. Günter, et al., Science 342, 954 (2013)

    Article  ADS  Google Scholar 

  18. D. Barredo, et al., Phys. Rev. Lett. 114, 113002 (2015)

    Article  ADS  Google Scholar 

  19. I. Mourachko, et al., Phys. Rev. Lett. 80, 253 (1998)

    Article  ADS  Google Scholar 

  20. W.R. Anderson, J.R. Veale, T.F. Gallagher, Phys. Rev. Lett. 80, 249 (1998)

    Article  ADS  Google Scholar 

  21. I.I. Ryabtsev, et al., Phys. Rev. Lett. 104, 073003 (2010)

    Article  ADS  Google Scholar 

  22. S. Ravets, et al., Nat. Phys. 10, 914 (2014)

    Article  Google Scholar 

  23. J.H. Gurian, et al., Phys. Rev. Lett. 108, 023005 (2012)

    Article  ADS  Google Scholar 

  24. M. Viteau, et al., Phys. Rev. A 78, 040704(R) (2008)

    Article  ADS  Google Scholar 

  25. T. Vogt, et al., Phys. Rev. Lett. 97, 083003 (2006)

    Article  ADS  Google Scholar 

  26. M.J. Renn, W.R. Anderson, T.F. Gallagher, Phys. Rev. A 58, 1324 (1994)

    Google Scholar 

  27. R. Kachru, et al., Phys. Rev. A 28, 2676 (1983)

    Article  ADS  Google Scholar 

  28. B. Pelle, et al., Phys. Rev. A 93, 023417 (2016)

    Article  ADS  Google Scholar 

  29. P. Goy, et al., Phys. Rev. A 26, 2733 (1982)

    Article  ADS  Google Scholar 

  30. C.S.E. van Ditzhuijzen, PhD Thesis, van der Waals-Zeeman Institute Amsterdam, 2009

  31. W. Li, P.J. Tanner, T.F. Gallagher, Phys. Rev. Lett. 94, 173001 (2005)

    Article  ADS  Google Scholar 

  32. A. Schwettmann, et al., Phys. Rev. A 74, 020701 (2006)

    Article  ADS  Google Scholar 

  33. J. Stanojevic, et al., Phys. Rev. A 78, 052709 (2008)

    Article  ADS  Google Scholar 

  34. J. Deiglmayr, et al., Phys. Rev. Lett. 113, 193001 (2014)

    Article  ADS  Google Scholar 

  35. M.L. Zimmerman, et al., Phys. Rev. A 20, 2251 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  36. B.T. Torosov, N.V. Vitanov, J. Phys. B: At. Mol. Opt. Phys. 45, 135502 (2012)

    Article  ADS  Google Scholar 

  37. B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990)

  38. T. Kraemer, et al., Nature 440, 3158 (2006)

    Article  Google Scholar 

  39. S.E. Pollack, D. Dries, R.G. Hulet, Science 326, 1683 (2009)

    Article  ADS  Google Scholar 

  40. M. Kiffner, W. Li, D. Jaksch, Phys. Rev. Lett. 111, 233003 (2013)

    Article  ADS  Google Scholar 

  41. T.F. Gallagher, Rydberg Atoms (Cambridge University Press, 1994)

  42. R. Faoro, et al., Nat. Commun. 6, 8173 (2015)

    Article  ADS  Google Scholar 

  43. M.T. Yamashita, et al., Phys. Rev. A 81, 063607 (2010)

    Article  ADS  Google Scholar 

  44. H. Bernien, et al., Nature 497, 86 (2013)

    Article  ADS  Google Scholar 

  45. B. Casabone, et al., Phys. Rev. Lett. 111, 100505 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Faoro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faoro, R., Pelle, B. & Zuliani, A. Few-body interactions in frozen Rydberg gases. Eur. Phys. J. Spec. Top. 225, 2935–2956 (2016). https://doi.org/10.1140/epjst/e2015-50335-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-50335-0

Navigation